Lessons Learned on which Applications Benefit when
Implemented on CPU-FPGA Heterogeneous System

Fredy Alves

Science and Technology Institute,
Universidade Federal de Vigosa
Florestal, Minas Gerais, Brazil
fredy.maciel@ufv.br

Peter Jamieson
Department of Electrical and
Computer Engineering, Miami
University
Oxford, OHIO, USA

Lucas Braganca
Science and Technology Institute,
Universidade Federal de Vicosa
Florestal, Minas Gerais, Brazil
lucas.braganca@ufv.br

jamiespa@miamioh.edu

Ricardo Ferreira
Departament of Informatics,
Universidade Federal de Vicosa
Vigosa, Minas Gerais, Brazil
ricardo@ufv.br

ABSTRACT

In this work, we provide “lessons learned” from implement-
ing two applications, collision detection and Boolean Gene
Regulatory Networks (GRNs) simulation, on a CPU-FPGA
heterogeneous platform. Both of these applications have, pre-
viously, been implemented and accelerated on FPGA-only
devices, but when implemented on a more complete host
and co-processor system the additional system factors, such
as input and output data communication, impact the results.
Using our two applications, we illustrate a set of lessons that
need to be considered when porting applications to these
emerging heterogeneous systems.

CCS CONCEPTS

« Hardware — Hardware accelerators; Reconfigurable
logic applications;

KEYWORDS

Hardware,Collision Detection,Accelarator,Xeon+FPGA Verilog

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
SAMOS XVII, Fuly 15-19, 2018, Pythagorion, Samos Island, Greece

© 2018 Copyright held by the owner/author(s). Publication rights licensed
to ACM.

ACM ISBN 978-1-4503-6494-2/18/07...$15.00
https://doi.org/10.1145/3229631.3229648

José Augusto M. Nacif

Science and Technology Institute,

Universidade Federal de Vigosa
Florestal, Minas Gerais, Brazil
jnacif@ufv.br

ACM Reference Format:

Fredy Alves, Peter Jamieson, Lucas Braganca, Ricardo Ferreira,
and José Augusto M. Nacif. 2018. Lessons Learned on which Appli-
cations Benefit when Implemented on CPU-FPGA Heterogeneous
System. In SAMOS XVIII: 2018 International Conference on Embed-
ded Computer Systems: Architectures, Modeling, and Simulation, July
15-19, 2018, Pythagorion, Samos Island, Greece. ACM, New York, NY,
USA, 7 pages. https://doi.org/10.1145/3229631.3229648

1 INTRODUCTION

More and more heterogeneous computing systems are emerg-
ing including single chips that include a heterogeneous set of
cores (including CPUs, GPUs, and FPGAs) to larger systems
composed of multiple heterogeneous nodes. In these larger
systems, the computation chips are connected to numerous
types of communication technologies and topologies, and
memories are integrated in these systems in a variety of ways.
A number of questions emerge with these systems, including
the ones we focus on - what algorithms are accelerated on
these new systems, and how should they be designed for the
new architecture?

In particular, this work focuses on looking at implement-
ing two algorithms on Intel’s Heterogeneous CPU-FPGA
Platform - collision detection and Boolean Gene Regulatory
Networks (GRN) simulation. These two applications have
been, previously, implemented on FPGAs with demonstrated
speedups, and therefore, many would assume that a hetero-
geneous system should have similar benefits when imple-
menting these algorithms. This is not always the case since
system-level limitations such as CPU to FPGA communica-
tion introduce additional factors in the overall success of
implementing these applications efficiently. The question
is, which factors should be considered when implementing
applications on these emerging architectures?

https://doi.org/10.1145/3229631.3229648
https://doi.org/10.1145/3229631.3229648

We look at how the two implementations of these algo-
rithms on the CPU-FPGA platform have varying success.
Boolean GRN simulation can be implemented with similar
speedups to FPGA-only implementations (which is GOOD),
and collision detection does not get significant speedup re-
sults compared to FPGA-only implementations (which is
BAD). We use these two cases to provide a “lessons learned”
about these types of CPU-FPGA systems, which is very use-
ful as we expect more and more systems to include both of
these cores. There is an expectation that soon we will see
both FPGAs and CPUs on the same die.

Our main lesson is a reminder that the co-computation,
performed on the FPGA, needs to be significant in computa-
tion cost as compared to the FPGA communication of both
input and output data. What’s interesting is this communi-
cation process (data to co-processor) is constantly changing,
meaning that depending on how the system connects the
memories, CPUs, and co-processors has significant impact
on the application. Understanding this architecture and its
capabilities is a necessity in porting applications to these
devices.

2 BACKGROUND - CPU-FPGA
PLATFORM

The recent acquisition of Altera by Intel is an indicator that
reconfigurable architectures such as FPGAs are becoming
interesting computation chips in mainstream computing. As
aresult of this new reality, Intel has developed heterogeneous
CPU-FPGA platforms for researching purposes. Some recent
papers that used this platform are [1, 3].

This specific heterogenous CPU-FPGA platform consists
of an Intel Xeon E5-2680v2@2.80GHz processor and an Al-
tera Stratix V@200MHz FPGA. These are connected through
a QPI Bus capable of a bandwidth of 8GT/s. In order to make
the most out of the bandwidth, two sockets are used on the
motherboard, where one is used by the Xeon and the other
by the Stratix V. All the communication between the CPU
and the FPGA is done through a 64KB cache. A new version
for this platform is already available for researches and it
can reach up to 28GB/s.

This drastic improvement in communication bandwidth
allows the use of FPGAs for accelerating algorithms with
a potential for parallelism, even when these are considered
fine grain applications. CPU-GPU heterogeneous platforms
are the main option for parallelizing and accelerating appli-
cations, but it only allows parallelism through SIMD where
all of its cores perform the same operation at the same time.
FPGAs are fully configurable logic devices, which allows
them to better address problems such as execution and data
divergence, and FPGAs are a low power device compared to
GPUs for many applications.

3 APPLICATIONS

In this section, we briefly introduce both algorithms used
in our case study - collision detection and Boolean GRN
simulation.

3.1 Collision Detection

3.1.1 The algorithm: Whenever a simulation is com-
posed of many bodies interacting with each other through
forces, one important algorithm is collision detection. These
algorithms detect when virtual objects collide, and they cal-
culate the result of these collisions.

The collision detection algorithm is composed of 3 main
steps. The first is the Bounding volume collision detec-
tion (BVCD): during this phase, bounding volumes which
were attributed to the bodies on the simulation are tested
against each other. In the case of the algorithm used in Alves
et al. [1], the bounding volume is a box, called the AABB
(Axis Aligned Bounding Box). The second step executes Spe-
cialized collision detection methods (SCDM). This step
uses the two bodies of two specific types and computes if they
collide or not by returning the normal vector and position
for the collision. In our implementation, we [1] accelerate
this step on an FPGA. The last step is the Virtual world
state update (VWSU). VWSU uses the collision results and
physics calculations to update the position for each virtual
object.

3.1.2 The implementation: Our [1] implementation of
SCDM is for collision detection between spheres. The input
is the 3D coordinates for two spheres and their respective
radii, and the output is a structure named contact point,
which is composed of the normal vector for the collision and
its position on the space. Another output is one bit which
specifies the collision type. The algorithm has been trans-
lated to an FPGA accelerator where the high level software
implementation is from an open source engine called Open
Dynamics Environment [12]. In that software framework, it
is possible to re-implement all of its SCDM directly on user
code without the need to recompile the whole engine.

The algorithm starts by computing the collision depth d,
and based on the result, it classifies the collision as one of
three types. A Fake Collision happens when d is greater
than the sum of the spheres radii and means they are not
touching each other. A Grazing Collision exists when d <
and the spheres are barely touching. The focus of this work
is on Real Collisions, which occur when d > 0 and the
spheres are hitting each other with a depth d.

We divide the sequential algorithm into 5 stages, executing
all the operations in each stage in parallel, although we exe-
cute each stage sequentially. The parallelized version of the
algorithm is written in Verilog, implemented on the FPGA,
and is called the Accelerator Function Unit (AFU).

Main memory Shared memory
Src Buffer Dst Buffer
CPU
[I R ity B ol Z - 1
N 2
Handshake Controller Dispatcher Collector
Processing Units Controller (PUC)

I I I I

SCPU SCPU SCPU

Figure 1: Collision detection accelerator system.

The AFU works as a co-processor on the FPGA that re-
ceives the spheres which are likely to collide from the BVCD
step and sends the results back to the CPU for the VWSU
step. Figure 1 shows the complete system. The ODE applica-
tion is executed on the CPU while the AFU executes on the
FPGA, and data is transferred between these two through a
shared memory accessed via a QPI bus.

As seen on Figure 1 the AFU is divided into two parts.
The Spheres collision processing unit (SCPU) implements
the parallelized sphere collision detection algorithm, and
it is replicated many times in order to be able to process
more than one collision in parallel. The Processing Units
Controller (PUC) is responsible to dispatch the data fetched
from the source buffer on the shared memory to the SCPUs,
and then collects the results in order to send them to the
destiny buffer where the CPU can use the data for the VWSU
step.

We have implemented this system on the Intel CPU-FPGA
research platform [7] as described in the background. The
CPU is a Xeon Processor E5-2680v2 which is connected to
an Altera Stratix V model 5SGXEA7N1F45C1 through a QPI
bus. For more details on both the algorithm and its imple-
mentation as an AFU, refer to [1].

3.2 Gene Regulatory Networks

3.2.1 The algorithm: The DNA in a cell composes its
genome where a short region of DNA is called, a gene. Genes
go through the a process called “gene expression” where they
act as a template for producing protein molecules which the
cell uses to adapt to its environment. There is a type of pro-
tein which acts as a molecular regulator known as Transcrip-
tion Factors (TFs), and these TFs modulate the frequency
with which genes are expressed. TFs can also regulate the

expression of genes that code for other TFs. These group
of connections between TFs and genes are known as Gene
Regulatory Networks (GRNs).

A GRN can be modeled as graph where:

e Each node vi represents a gene.

e The state for each gene is a logic value that indicates
if the gene is active or not.

e Each node is connected to ki nodes, where ki >0

e Ateach timestep t each node state is updated according
to a Boolean function Fi.

.4\2/

1
I
I
I
I
I
I
Y |
, |0110 0111 !
: - —y — - Attractor
1
|

|OOO1 |-> 0100 l:I'IOOO |

V1 =V2 Xor V4
V2=V1orV4
V3=V1 And V4
V4 =V3 And ~V4

Figure 2: GRN example.

The new value of anode viis vi(t+1) = fi(viy(t), ...vig(t))
where k is the number of adjacent nodes of vi. In Fig. 2 the
functions are inside the nodes. A network state (Si) is a
vector of all the node states on it, and in the example seen on
Fig. 2 the initial state Si = v1v2v3v4 = 0010. After a certain
number of timesteps the network converges to a set of stable
steady states. An example can be seen on the network on
Fig. 2 where the network performs the transactions 0010
—1001 —0110 —0001 —0100 —1000 and then it keeps
updating from 0100 to 1000 and back to 0100 in a loop. This
set of stable steady states is called an attractor.

Since the amount of possible states for a network is ex-
ponential, the solution space is too large to optimize. If the
state update is synchronous for all nodes, then it is possible
to partition the space into fully connected disjointed graphs,
and these are composed each by an attractor and the group
of states that converge into it, called its basin. Silva et al. [3]
implement a framework that computes the basin histograms
for the dynamics of the network, the length of all attractors,
and the average number of steps to reach an attractor from
a random initial state.

3.2.2 The implementation: Our design consists of an
interface unit, a thread control unit, and a set of processing
elements (PEs). Each PE is composed by a control unit and

two functional units. The functional unit is the Boolean func-
tion implementation for each node in the network, and it
is implemented as Boolean expressions with a one-bit reg-
ister to compute and store the node state. Since the state
computations for each node are independent, they can all be
computed at the same time in one clock cycle.

A network state Si will converge to an attractor after Ti
timesteps where T'i is the size of the transient associated to Si.
A PE is composed by two copies of the GRN with all its nodes
and connections. If we consider a state Sa as the first inside
a cyclic attractor, the PE will return to Sa after L steps where
L is the size of the attractor. The strategy used in this work
is to use two copies of a network N1 and N2, that is, one PE.
Every time N1 performs one simulation step, N2 performs
2, an attractor is identified when Sn1 == Sn2. This approach
is O(1) in memory usage, and this is important because the
solution space is exponential meaning it is too large to fit in
memory. The PE is composed by two FUs (FUp1 and FUp2),
FUp1 performs one clock cycle while FUp2 performs two.
The PE computes the attractor length by keeping P2 stopped,
while P1 performs L clock cycles until P1 is equal to P2 again.

Each PE receives a state for its FUss as an input which they
use to compute the attractor and the transient length in a few
cycles. The design proposed on this work can manage light
and irregular thread loads by using asynchronous FIFOs and
PEs. The thread control unit feeds the FIFO buffers with a
sequence of states to be computed. The PE gets a state from
the input FIFO and computes the transient and the attractor
length and writes them to an output FIFO.

4 APPLICATION IMPLEMENTATION
COMPARISONS

In this section, we present implemenation details of the Col-
lision Detection and Gene Regulatory Network applications.

4.1 Collision Detection Implementation
Comparison

Table 1 shows collision detection implementations across
a set of platforms. We report the platform, CPU, and FP-
GA/GPU in columns 2, 3, and 4, and include communication
method, parts of the collision detection pipeline, data format,
data width, platform, and finally speedup in the remaining
columns. Our implementation is at the top and is in bold.
The key ideas we want to show is first that FPGA imple-
mentations of collision detection tend to show their results
on data sets that are either pre-loaded or fit entirely on the
device. This is not the reality if collision detection FPGA
implementations are to exist in real applications. Second,
one criticism of our work is that why would we put collision
detection onto an FPGA. Even though the algorithm can be
implemented on many platforms, in the key two instances

collision detection is used (simulation and video games) these
other computation devices are usually in use and the algo-
rithm is interleaved with other work. For example in a video
game, the GPU is used for its main purpose, graphics, and
the CPU is used in all sorts of other aspects of maintaining
the virtual world. This means that the FPGA could be used
for offloading collision detection.

There are many ways to implement collision detection
on FPGAs, and our model described in 3.1.1 uses a strategy
based on the structure of the bodies using common physics
and geometry computations. Wu et al. [15] treat the same
problem with a mathematical approach where the interior-
point algorithm is used, and this is a typical algorithm used
for optimization and it needs a mathematical model, which
can be adapted for multiple problems. But even when the
strategy changes, the idea of the three collision detection
steps is kept. Their works use of pre-loaded data, which
allows them to reach orders of magnitude of speedup, and
they do not compare their results to other systems.

The data format and width representing the objects is also
an important part of design performance. Specifically, this
impacts memory usage efficiency, communication through-
put, and the cost for arithmetic operations. Raabe et al. [11]
use fixed point in order to implement the BVCD step, and
the reason why most implementations use this data format
for implementing hardware accelerators is so an arithmetic
operation can fit inside a DSP block on an FPGA, which is
usually 18 bit wide for each input. In our work, the data is
single precision floating point, and the DSPs are 18 bit, and
therefore, more than one DSP is used to create a 32 bit DSP,
which causes an overhead due to the need for programmable
routing, which impacts the maximum clocking frequency of
our design. Raabe et al. [11] presents a speedup of 4x, but it
does not specify how data is transferred to the FPGA, and if
this transfer time was taken into account.

When more parts of the collision pipeline are implemented
on the FPGA, the speedup is better since the ratio of data to
processing changes in favor of computation. Zhang et al. [5]
is a great example of this since both the BVCD and the SCDM
are calculated on the FPGA, and a speedup of 8x is achieved.
This work does not specify the communication method be-
tween host and FPGA, or if the time for data transfer is taken
into account. Our work only implemented the SCDM and
the ratio of data to processing is higher.

Both works ([4, 8]) that use GPUs are applied to robotics.
It does not always make sense to use a GPU for collision de-
tection since the GPU could be busy processing the graphics.
However, in robotics the GPU can be used to optimize robot
movement through a physical space modeled as a collision
detection problem. Their implementations do not compare
to CPUs, and A. Hermann et al. [4] provide no details about

Table 1: Collision Detection Implementations on Various Platforms.

Research Comm Data Data Speedup
Group Platform CPU FPGA/GPU method Steps format | size CPU
Xeon Processors

Hybrid Altera Stratix V Shared Floating .
Collision [1] | CPUFPGA 12558'161?12 v2 5SGXEA7N1F45C1 | Memory | SCPM | point | 32bits | 0-14x
Linear Altera DE2 i Cyclone I EP2 Pre-loaded SCDM Floating |)
Solution [15] | board 2C35F672C6 RAMs Point
Fixed Alpha Data Xilinx Virtex II Fixed 11

I()lelt [11] ADM-XRC-II | Pentium Il 1 Ghz | (XC 2V6000, - BVCD L’i X - 4x
P board speed grade -4) P 44-bits
Robot i Intel Core TM i7 | Xilinx Virtex-6 i BVCD | Floating 32-bits | 8
FPGA [5] CPU 860 2.8 GHz | XC6VHX565T SCDM | Point 1S | ex
Mobile . NVIDIA Titan GTX | Shared .
GPU [8] CPU-GPU Core i7, 3.4 GHz 6 GB GDDR5 RAM | Memory All - 64-bits | -
Robot i i NVIDIA GeForce Shared All)))
GPU [4] GTX TITAN Memory

Table 2: GRN Implementations on Various Platforms.
FPGA/ Comm Speedup | Net
Research Group | Platform CPU GPU method Model CPU Type Attractor
Reconfig Xeon
. Shared

2017 CPU-FPGA | E5-2680v2 | Stratix V memor Sync | 3494 Real | yes

FPGA [3] 2.8 GHz y

FPL Xilinx Kintex

2017 CPU-FPGA ;%N\[VER g | UltraScale :‘ei;idr i‘;n‘;l/c 11.7 Real | no

FPGA [10] KU060 y Y

FPL Intel Core

2010 CPU-FPGA | 2 duo Virtex-6 Serial Sync 1300 Synth | yes

FPGA [6] (2.8GHz)

FPL

Pentium 4 | Xilinx Pre-

2005 FPGA . Sync 76 Synth | no

FPGA [13] 2.4GHz Virtex II loaded

MWSCAS . .

2004 ARM-FPGA fggtﬁuzm \zfégt(fx iﬁ:ﬁi Sync 1285 Synth | yes

FPGA [17] : y

PLOSONE Intel Core2 | NVIDIA Shared

2014 CPU-GPU Quad GeForce memor Sync 453 Synth | yes

GPU [14] 09400 2.66 | GTX 680 y

the CPUs in their system. Also, max performance is not nec-
essarily the main concern in robotics. For example, a robot
responsible for moving boxes in a factory does not need to

4.2 Gene Regulatory Network
Implementation Comparison

process at a rate of 200 Km/h if the maximum mechanical
speed of the system is 30 Km/h. We provide the GPU results

for completeness.

Table 2 shows the Boolean GRN across a set of platforms
structured similar to Table 1 above.

GRNs are synchronous when all genes are updated at the
same time, and asynchronous when only a subset of these
nodes are updated at the same time. Just a few of the works
for GRN acceleration on FPGAs implement the asynchro-
nous model. One example in this direction is [10] where a

framework for generating both synchronous and asynchro-
nous designs from Boolean network models was created, but
as we can see on Table 2 it has the smallest speedup. Their
designs are compared to an implementation on a high per-
formance server, and the more generic the design is the less
speedup you get since it is supposed to cover several possible
setups, and this makes it hard to optimize the design for all
instances. Additionally, synchronous designs broadcast their
clock and reset signals to all genes, while asynchronous de-
signs have to create networks in order to be able to control
each gene separately. These large networks tend to create
many switches, which are one of the main causes for creating
a slow down (because of slacks and pipeline bubbles) in their
design.

As expected and seen on Table 2, all the other works
other than [10] present significant speedups. Since these
are all synchronous designs, this is expected. Among these
works [6, 13, 17], Tagkopoulos et al. [13] has the lowest
speedup because their system uses the Jtag communication
to pre-load the data to the FPGA. The designs, which do not
compute the attractor for the GRN, have the lowest speedups,
and this happens because the reuse of a GRN initial state
is lower for these designs. In order to find an attractor, a
design can execute many iterations for a single initial state,
which makes the ratio data to processing lower than a design
which, for example, only checks genes of interest.

The speedups for Ferreira et al. [6] and Zerarka et al. [17]
are almost the same, but Zerarka et al. [17] embed an ARM
processor to communicate with the FPGA, which is a higher
level of integration than a general purpose CPU, and this de-
creases the time to transfer data. The communication on [6]
is through a serial port, which is a slow communication chan-
nel and is not accounted for when computing the speedup.
Our implementation, Silva et al. [3], takes into account all the
data transfer time for the speedup calculation, and it uses real
literature based networks as benchmarks. We can see that,
even when the transfer time is fully considered, the speedup
is still close to a CPU-GPU system as in [14]. Additionally,
our implementation is more efficient in power consumption,
because FPGAs, typically, have a power consumption as great
as 10 times lower than GPUs.

5 LESSONS LEARNED ABOUT
HETEROGENEOUS ARCHITECTURES

In this section, we use the comparison breakdown to provide
our “lessons learned” for the CPU-FPGA platform based on
our GOOD - Boolean GRN algorithm and BAD - collision
detection results. Note that our designs are the bold entries
in tables 1 and 2.

5.1 Lesson 1 -It’s all about ratios

In the CPU-FPGA coupling systems the communication of
data is fundamental. The reason that the FPGA is becoming
closer and closer to an on die core is the same reason that
memories and communication of data is improved as the
distance between them physically decreases. The data tends
to be the limiting factor in high performance computation.

In our case the ratio of time spent communicating data
as compared to the computation on that data is a major
factor in our results. Our collision detection only performs a
portion of the collision detection pipeline, which results in a
small speedup. In Boolean GRN, however, the computation
is significant compared to the data communication.

The key is understanding your application in terms of a
ratio of this data communication to computation cost as it
applies to the CPU-FPGA platform.

5.2 Lesson 2 - Simplification matters

If you can simplify the FPGA computation in terms of data
representation as compared to software implementations,
then there is potential for benefit. Mainly, the idea is to use
approximations of the data that still work with the problem.

For example, in collision detection the collision detection
pipeline is used as a filtering system to determine which
objects need to be compared with one another. Early in this
pipeline objects tend not to be colliding, and therefore, rough
calculations can be used to determine if this is the case. The
question is can the implementation take advantage of this.

The Boolean GRN application does take advantage of this
by using bitwise calculations (very efficient on an FPGA
as that’s the fundamental building block of the device) to
determine gene expression.

5.3 Lesson 3 - Don’t Forget Amdahl and
Remember Design Time

Amdahl’s law [2] is very useful for a quick way to estimate
speedup before spending significant time to speedup the
application. On the CPU-FPGA system you can use both
Amdahl’s law and an estimate of the ratio of communication
to computation to have a quick estimate of speedup.

This estimate, however, is a best case estimation where
you are assuming that you can parallelize a certain aspect
of your application very efficiently. Xilinx’s technical report
on creating FPGA designs [16] has a diagram on page 7 that
reminds us that there is a significant design time cost to
optimizing acceleration on any platform (especially FPGAs).
This should be highlighted in research papers like ours to
make non-experts aware of the time spent to get any speedup
on reconfigurable fabrics, which is hard to design for.

5.4 Lesson 4 - How well does application
map to the acceleration architecture?

One aspect to consider is how well does the application map
to the computing architecture. In our examples, Boolean GRN
maps very well to an FPGA which smallest components are
designed as Lookup Tables (LUTs) that implement Boolean
functions. Collision detection, on the other hand, does not
map as easily to the architecture since the main focus is com-
paring Cartesian points and a number of DSPs are needed for
various calculations in this process. This doesn’t mean that
if the algorithmic version of a problem doesn’t easily map
that it shouldn’t be converted, but it may take significant
time to figure out how to do the mapping efficiently.

In this case, parallel design patterns [9] may allow an un-
derstanding of how to map to particular architectures. Unfor-
tunately, nobody has done this work yet for reconfigurable
fabrics.

6 CONCLUSION AND FUTURE WORK

In this work, we presented two applications mapped to a
CPU-FPGA platform where one application (Collision De-
tection) got very little speedup, and the other application
(Boolean GRN) got significant speedup. These two applica-
tions allowed us to look at some “Lessons Learned” with
respect to porting applications to this type of system. The
key lesson is to understand the communication to compu-
tation ratio with respect to the parallelizable parts of the
algorithm. In these host to co-processor systems, just like
the data to CPU problem, can be the key limiting factor on
how much benefit we will gain by porting the application.

In the future, we are interested in looking at applications
on CPU-FPGA systems, since we expect the two to be more
tightly coupled until the day when the FPGA is just one of
the cores on a die. Understanding how the communication
technology impacts these systems will be key to determining
which applications to map to these. Additionally, we are
interested in improving our applications by finding ways to
improve the computation. For example, in collision detection
this is possible by implementing more of the pipeline on the
FPGA.

7 ACKNOWLEDGEMENTS

The authors thank CAPES, FAPEMIG and CNPQ for the
financial support. We also thank Intel Altera and Synopsys
for the software licenses and the hardware used during this
work.

REFERENCES

[1] F. A. M. Alves, P. Jamieson, L. B. da Silva, R. S. Ferreira, and J. A. M.
Nacif. 2017. Designing a collision detection accelerator on a het-
erogeneous CPU-FPGA platform. In 2017 International Conference

[2

—

3

[t

(4]

5

—

[6

—

[7

—

(8]

[9

—

[10]

(1]

[12]
[13]

[14]

[15]

[16]

[17]

on ReConFigurable Computing and FPGAs (ReConFig). 1-6. DOI:
http://dx.doi.org/10.1109/RECONFIG.2017.8279786

Gene M Amdahl. 1967. Validity of the single processor approach to
achieving large scale computing capabilities. In Proceedings of the April
18-20, 1967, spring joint computer conference. ACM, 483-485.

L. B. da Silva, D. Almeida, J. A. M. Nacif, I. Sanchez-Osorio, C. A.
Hernandez-Martinez, and R. Ferreira. 2017. Exploring the dynamics of
large-scale gene regulatory networks using hardware acceleration on
a heterogeneous CPU-FPGA platform. In 2017 International Conference
on ReConFigurable Computing and FPGAs (ReConFig). 1-7. DOI : http:
//dx.doi.org/10.1109/RECONFIG.2017.8279791

A. Hermann et al. 2015. Anticipate your surroundings: Predictive
collision detection between dynamic obstacles and planned robot tra-
jectories on the GPU. In 2015 European Conference on Mobile Robots
(ECMR). 1-8.

Zhang et al. 2016. FPGA-Based High-Performance Collision Detection:
An Enabling Technique for Image-Guided Robotic Surgery. Frontiers
in Robotics and Al 3 (2016), 51. http://journal frontiersin.org/article/10.
3389/frobt.2016.00051

R. Ferreira and J. C. G. Vendramini. 2010. FPGA-accelerated Attrac-
tor Computation of Scale Free Gene Regulatory Networks. In 2010
International Conference on Field Programmable Logic and Applications.
550-555. DOI:http://dx.doi.org/10.1109/FPL.2010.108

P K Gupta. 2015. Intel Xeon+FPGA Platform for the Data Cen-
ter. (2015). https://www.ece.cmu.edu/~calcm/carl/lib/exe/fetch.php?
media=carl15-gupta.pdf

A. Hermann, F. Drews, J. Bauer, S. Klemm, A. Roennau, and R. Dill-
mann. 2014. Unified GPU voxel collision detection for mobile manipu-
lation planning. In 2014 IEEE/RSJ International Conference on Intelligent
Robots and Systems. 4154-4160. DOI:http://dx.doi.org/10.1109/IROS.
2014.6943148

Timothy G Mattson, Beverly Sanders, and Berna Massingill. 2004.
Patterns for parallel programming. Pearson Education.

M. Purandare, R. Polig, and C. Hagleitner. 2017. Accelerated analysis
of Boolean gene regulatory networks. In 2017 27th International Con-
ference on Field Programmable Logic and Applications (FPL). 1-6. DOI:
http://dx.doi.org/10.23919/FPL.2017.8056778

A. Raabe, S. Hochgurtel, J. Anlauf, and G. Zachmann. 2006. Space-
efficient FPGA-accelerated collision detection for virtual prototyping.
In Proceedings of the Design Automation Test in Europe Conference,
Vol. 2. 6 pp.—. DOI:http://dx.doi.org/10.1109/DATE.2006.243875
Russell Smith. Open Dynamics Engine. (????). http://www.ode.org/
Ilias Tagkopoulos, Charles Zukowski, German Cavelier, and Dimitris
Anastassiou. 2003. A Custom FPGA for the Simulation of Gene Regula-
tory Networks. In Proceedings of the 13th ACM Great Lakes Symposium
on VLSI (GLSVLSI ’03). ACM, New York, NY, USA, 132-135. DOI:
http://dx.doi.org/10.1145/764808.764843

Hung-Cuong Trinh, Duc-Hau Le, and Yung-Keun Kwon. 2014. PANET:
A GPU-Based Tool for Fast Parallel Analysis of Robustness Dynamics
and Feed-Forward/Feedback Loop Structures in Large-Scale Biological
Networks. PLOS ONE 9, 7 (07 2014), 1-9. DOI:http://dx.doi.org/10.
1371/journal.pone.0103010

C.H. Wu, S. O. Memik, and S. Mehrotra. 2009. FPGA Implementation of
the Interior-Point Algorithm with Applications to Collision Detection.
In 2009 17th IEEE Symposium on Field Programmable Custom Computing
Machines. 295-298. DOI : http://dx.doi.org/10.1109/FCCM.2009.38
Xilinx. 2013. Introduction to FPGA Design with Vivado High-Level
Synthesis. Technical Report. Xilinx Inc.

M. T. Zerarka, J. P. David, and E. M. Aboulhamid. 2004. High speed
emulation of gene regulatory networks using FPGAs. In Circuits and
Systems, 2004. MWSCAS °04. The 2004 47th Midwest Symposium on,
Vol. 1. 1-545-8 vol.1. DOI:http://dx.doi.org/10.1109/MWSCAS.2004.
1354048

http://dx.doi.org/10.1109/RECONFIG.2017.8279786
http://dx.doi.org/10.1109/RECONFIG.2017.8279791
http://dx.doi.org/10.1109/RECONFIG.2017.8279791
http://journal.frontiersin.org/article/10.3389/frobt.2016.00051
http://journal.frontiersin.org/article/10.3389/frobt.2016.00051
http://dx.doi.org/10.1109/FPL.2010.108
https://www.ece.cmu.edu/~calcm/carl/lib/exe/fetch.php?media=carl15-gupta.pdf
https://www.ece.cmu.edu/~calcm/carl/lib/exe/fetch.php?media=carl15-gupta.pdf
http://dx.doi.org/10.1109/IROS.2014.6943148
http://dx.doi.org/10.1109/IROS.2014.6943148
http://dx.doi.org/10.23919/FPL.2017.8056778
http://dx.doi.org/10.1109/DATE.2006.243875
http://www.ode.org/
http://dx.doi.org/10.1145/764808.764843
http://dx.doi.org/10.1371/journal.pone.0103010
http://dx.doi.org/10.1371/journal.pone.0103010
http://dx.doi.org/10.1109/FCCM.2009.38
http://dx.doi.org/10.1109/MWSCAS.2004.1354048
http://dx.doi.org/10.1109/MWSCAS.2004.1354048

	Abstract
	1 Introduction
	2 Background - CPU-FPGA platform
	3 Applications
	3.1 Collision Detection
	3.2 Gene Regulatory Networks

	4 Application Implementation Comparisons
	4.1 Collision Detection Implementation Comparison
	4.2 Gene Regulatory Network Implementation Comparison

	5 Lessons Learned about Heterogeneous Architectures
	5.1 Lesson 1 - It's all about ratios
	5.2 Lesson 2 - Simplification matters
	5.3 Lesson 3 - Don't Forget Amdahl and Remember Design Time
	5.4 Lesson 4 - How well does application map to the acceleration architecture?

	6 Conclusion and Future Work
	7 Acknowledgements
	References

