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Consist of:

1. Programmable logic
and routing

» soft logic fabric

2. Less-programmable
dedicated circuits

* hard structures
o e.g. multiplier
e e.g memory block

Modern FPGASs
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FPGA Hard Structures

* Are very useful when used
— major gain in speed, logic density
 Are very wasteful when not used

 The logic area goes unused, but
worse...




Programmable Routing is Wasted!

e 70%-90% of FPGA area is routing!

e Everyone pays for hard structures
— but not everyone can use all of them




What can we do about waste?

Try to employ unused hard structures

1. Use multiplier as barrel shifter
o [Gigliotti, 2004]

2. Use memory block as lookup table to
Implement combinational logic
o [Wilton, 2002; Cong and Xu, 2000]




Our Ildea

 Employ unused multipliers to implement
multiplexers
— Saves programmable logic
 Multiplexers are common in many
applications:
— Networking

— Processors
— Many kinds of datapath
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How to Make Multiplexers from
Multipliers

Recall:

— multiply a number by 2" shifts the binary
number by n bit positions

—we're going to use it to make expensive
shifters/multiplexers

* Not actually expensive, since multiplier was
going unused!




Use Multiplier to Shift/Select

e Use shiftto
select input to
pass through
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Use Multiplier to Shift/Select

e Use shiftto
select input to
pass through

a3 a2 al a0
Multiplexer Select Signals
| 0 || 0 || 1 I 0 I
21
a2 |lal aO O

Multiplexer Output




Use Multiplier to Shift/Select

e Use shiftto
select input to
pass through
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Use Multiplier to Shift/Select

e Use shiftto
select input to
pass through
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Doesn’t look like a multiplexer

What we know:

Encoded Select
Signals

* Multiplexer has
encoded select \I\I\
signals

Output
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uItipIier select Requires
Decoded Selects

Encoded Select
Signals

o Multiplier is only used ||
to select signal

* Requires that select

signals are decoded _\uui“%?gﬁaie'eCt
In programmable logic

Inputs
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uItipIier select Requires
Decoded Selects

Encoded Select
Signals

o Multiplier is only used |
to select signal cOBING

« Requires that select o

signals are decoded In _\u”fgﬁgﬁaie'ect
programmable logic
Inputs

 Decoding costs, but ... & —
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1. Can Amortize Decoding Logic

e For busses share
signals to
multiplex

 Only need to
generate decoded
selects once
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Therel

State State State
00001000 00100000 01000000 00000001
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Decoded Selects are Already
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Issue: Speed

 How will mapping affect circuit speed?

— Example: 9:1 multiplexer
« Soft logic mux = 422 MHz;
 Built with 9*9 hard multiplier = 307 MHz.
e 115 MHz slowdown!

* Problem if employed on critical path, or
causes path to become critical




Mapping Algorithm




Input

* Netlist of gates and
some higher level
structures
— Logic
— Multipliers
— Memories
— Multiplexers




Output

e Similar netlist with
multiplexers mapped to

— hard multipliers or
— soft logic




Goal of Algorithm

e Largest reduction in number of soft logic
elements used

— Potentially allow user to reduce part size,
save money




Step 1

e Group all multiplexers that share
common encoded select signals




Step 2

e For each group or multiplexer, estimate
the area saving

— Let

» CS(size) = cost of implementing soft
multiplexer

e CD(size) = cost of decoding logic
e IM| = number of multiplexers in a group

— SAVINGS = (ZCS(size) — CD(size)) / M|




Step 3

e Sort the groups and multiplexers in the
order from greatest savings to least
savings




Step 4

 Remove from list multiplexers on path
that includes a multiplier

— Hard multipliers often sit on critical path
— Heuristic avoids speed reduction




Step 5

o Greedily select most-beneficial
multiplexers to map

« Go backtostep 4

e Finish
—when no unused multipliers left
— When no multiplexers left to map




Experimental Setup




Experimental Setup

o Will compare with and without mapping
 FPGA Used: Stratix |
e CAD Flow based on Altera Quartus 4.1




CAD Flow

 New front-end synthesis
— Odin [FPL 2005]
e Plugs into Quartus back-

end from logic synthesis
down

HDL Description )
J

Odin - Elaborate

J
Odin - Partial Map

[ FPGA programming file )




Benchmarks

e Collection of Verilog Benchmarks
— Opencores
— SCU-RTL
— Texas-97
— Benchmark Suite for Placement-2001

— Local designs converted from VHDL
* Raytrace
* Molecular Dynamics
« Stereo Vision

 Results are dependent on these benchmarks




Results

o WIll present results separately for
benchmarks with and without multipliers




Multipliers

Percent Percent
Benchmarks reduction in Speed
LEs Gain
cordic 8 8 4% -149%
cordic_18 18 1% -25%
MAC1 5% -40%
MAC2 2% -12%
des_area 18% 5%
des_perf 5% -145%
sv_chip0 1% -30%
sv_chip0_no_mem 1% -46%
sv_chip3_no_mem 19% -168%
rt_frambuf_top 9% -58%
rt_frambuf top_no_mem 1% -76%
rt_boundtop 2% -31%
rt_boundtop_no_mem 5% -33%
Geometric Average 6% -54%

e Average
reduction In
LES: 5.8%

e Average
reduction In
speed: 54%




ults — Benchmarks with
Multipliers

Percent Percent

Benchmarks reduction in Speed

LEs Gain
ffit_ 258 6 1% 1%
iirl 0% 1%
jir2 11% -1%
fir 3 8 8 0% 0%
fir 24 16 16 0% 0%
fir_scu_rtl 42% -13%
diffeq_f systemC 7% 0%
diffeq_paj_convert 12% 0%
sv_chipl 0% -1%
n_raygentop 5% 3%
rnt_raygentop _no_mem 5% -3%
oc45 cpu 6% 5%
reed_sol decoderl 8% -1%
reed_sol _decoder2 5% 1%
md 0% 0%
Geometric Average 8% 0%

e Average
reduction In
LES: 7.6%

e Average
reduction In
speed: %0.5




Summary

e Technique reduces Logic Element
Count by 6.8% on average across all

benchmarks
* Reduction in speed varies:

— Benchmarks that already employ
multipliers almost no loss in speed

— Benchmarks w/o multipliers: 54% reduction




Future Work

e Technique should improve if we can
estimate speed of circuit paths at front-
end

e Should architect a better hard structure
that are more widely usable




