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Modern FPGAs
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Consist of:
1. Programmable logic 

and routing
• soft logic fabric

2. Less-programmable 
dedicated circuits

• hard structures
• e.g. multiplier
• e.g memory block



FPGA Hard Structures

• Are very useful when used
– major gain in speed, logic density

• Are very wasteful when not used
• The  logic area goes unused, but 

worse…



Programmable Routing is Wasted!

• 70%-90% of FPGA area is routing!
• Everyone pays for hard structures

– but not everyone can use all of them



What can we do about waste?

Try to employ unused hard structures
1. Use multiplier as barrel shifter 

• [Gigliotti, 2004]
2. Use memory block as lookup table to 

implement combinational logic
• [Wilton, 2002; Cong and Xu, 2000]



Our Idea
• Employ unused multipliers to implement 

multiplexers
– Saves programmable logic

• Multiplexers are common in many 
applications:
– Networking
– Processors
– Many kinds of datapath



How to Make Multiplexers from 
Multipliers

Recall: 
– multiply a number by 2n shifts the binary 

number by n bit positions
– we’re going to use it to make expensive 

shifters/multiplexers
• Not actually expensive, since multiplier was 

going unused!



Use Multiplier to Shift/Select

• Use shift to 
select input to 
pass through
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Use Multiplier to Shift/Select

• Use shift to 
select input to 
pass through
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Use Multiplier to Shift/Select

• Use shift to 
select input to 
pass through
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Use Multiplier to Shift/Select

• Use shift to 
select input to 
pass through
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Doesn’t look like a multiplexer

What we know:
• Multiplexer has 

encoded select 
signals

Encoded Select
Signals

Inputs Output



Multiplier select Requires 
Decoded Selects

• Multiplier is only used 
to select signal

• Requires that select 
signals are decoded 
in programmable logic

Inputs
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Multiplier select Requires 
Decoded Selects

• Multiplier is only used 
to select signal

• Requires that select 
signals are decoded in 
programmable logic

• Decoding costs, but …
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1. Can Amortize Decoding Logic

• For busses share 
signals to 
multiplex

• Only need to 
generate decoded 
selects once 4
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2. Decoded Selects are Already 
There!

• Imagine a one-hot 
encoded state 
machine 
controlling the 
output of an ALU

ALU output
bit 0

State
00001000

State
00100000

State
00000001

State
01000000

Adder output
bit 0

Logic output
bit 0

Multiplier
output bit 0

Shift output
bit 0



Issue: Speed

• How will mapping affect circuit speed?
– Example: 9:1 multiplexer 

• Soft logic mux = 422 MHz; 
• Built with 9*9 hard multiplier = 307 MHz.  
• 115 MHz slowdown!

• Problem if employed on critical path, or 
causes path to become critical



Mapping Algorithm



Input

• Netlist of gates and 
some higher level 
structures
– Logic
– Multipliers
– Memories
– Multiplexers



Output

• Similar netlist with 
multiplexers mapped to 
– hard multipliers or
– soft logic

SOFT



Goal of Algorithm

• Largest reduction in number of soft logic 
elements used
– Potentially allow user to reduce part size, 

save money



Step 1

• Group all multiplexers that share 
common encoded select signals



Step 2

• For each group or multiplexer, estimate 
the area saving
– Let

• CS(size) = cost of implementing soft 
multiplexer

• CD(size) = cost of decoding logic
• |M| = number of multiplexers in a group

– SAVINGS = (ΣCS(size) – CD(size)) / |M|



Step 3

• Sort the groups and multiplexers in the 
order from greatest savings to least 
savings



Step 4

• Remove from list multiplexers on path 
that includes a multiplier
– Hard multipliers often sit on critical path
– Heuristic avoids speed reduction



Step 5

• Greedily select most-beneficial 
multiplexers to map

• Go back to step 4
• Finish 

– when no unused multipliers left
– When no multiplexers left to map



Experimental Setup



Experimental Setup

• Will compare with and without mapping
• FPGA Used: Stratix I
• CAD Flow based on Altera Quartus 4.1



CAD Flow

• New front-end synthesis 
– Odin [FPL 2005]

• Plugs into Quartus back-
end from logic synthesis 
down

Quartus - Logic optimization

Quartus - Technology map

Quartus - Pack logic blocks

Quartus - Place logic blocks

Quartus - Route logic blocks

FPGA programming file

HDL Description

Odin - Elaborate

Odin - Partial Map



Benchmarks
• Collection of Verilog Benchmarks

– Opencores
– SCU-RTL
– Texas-97
– Benchmark Suite for Placement-2001
– Local designs converted from VHDL

• Raytrace
• Molecular Dynamics
• Stereo Vision

• Results are dependent on these benchmarks



Results

• Will present results separately for 
benchmarks with and without multipliers



Results – Benchmarks without 
Multipliers

Benchmarks
Percent 

reduction in 
LEs

Percent 
Speed 
Gain

cordic_8_8 4% -149%
cordic_18_18 1% -25%
MAC1 5% -40%
MAC2 2% -12%
des_area 18% 5%
des_perf 5% -145%
sv_chip0 1% -30%
sv_chip0_no_mem 1% -46%
sv_chip3_no_mem 19% -168%
rt_frambuf_top 9% -58%
rt_frambuf_top_no_mem 1% -76%
rt_boundtop 2% -31%
rt_boundtop_no_mem 5% -33%
Geometric Average 6% -54%

• Average 
reduction in 
LEs: 5.8%

• Average 
reduction in 
speed: 54%



Results – Benchmarks with 
Multipliers

Benchmarks
Percent 

reduction in 
LEs

Percent 
Speed 
Gain

fft_258_6 1% 1%
iir1 0% 1%
iir2 11% -1%
fir_3_8_8 0% 0%
fir_24_16_16 0% 0%
fir_scu_rtl 42% -13%
diffeq_f_systemC 7% 0%
diffeq_paj_convert 12% 0%
sv_chip1 0% -1%
rt_raygentop 5% 3%
rt_raygentop_no_mem 5% -3%
oc45_cpu 6% 5%
reed_sol_decoder1 8% -1%
reed_sol_decoder2 5% 1%
md 0% 0%
Geometric Average 8% 0%

• Average 
reduction in 
LEs: 7.6%

• Average 
reduction in 
speed: %0.5



Summary

• Technique reduces Logic Element 
Count by 6.8% on average across all 
benchmarks

• Reduction in speed varies:
– Benchmarks that already employ 

multipliers almost no loss in speed
– Benchmarks w/o multipliers: 54% reduction



Future Work

• Technique should improve if we can 
estimate speed of circuit paths at front-
end

• Should architect a better hard structure 
that are more widely usable


