
Mapping Multiplexers onto
Hard Multipliers in FPGAs

Peter Jamieson and Jonathan Rose
The Edward S. Rogers Sr. Department of Electrical

and Computer Engineering
University of Toronto

Modern FPGAs

SOFT
LOGIC

SOFT
LOGIC

SOFT
LOGIC

SOFT
LOGIC

SOFT
LOGIC

SOFT
LOGIC

SOFT
LOGIC

SOFT
LOGIC

SOFT
LOGIC

SOFT
LOGIC

SOFT
LOGIC

SOFT
LOGIC

SOFT
LOGIC

SOFT
LOGIC

SOFT
LOGIC

SOFT
LOGIC

SOFT
LOGIC

SOFT
LOGIC

SOFT
LOGIC

SOFT
LOGIC

SOFT
LOGIC

SOFT
LOGIC

SOFT
LOGIC

SOFT
LOGIC

SOFT
LOGIC

SOFT
LOGIC

M
EM

O
R

Y B
LO

C
K

M
EM

O
R

Y B
LO

C
K

Consist of:
1. Programmable logic

and routing
• soft logic fabric

2. Less-programmable
dedicated circuits

• hard structures
• e.g. multiplier
• e.g memory block

FPGA Hard Structures

• Are very useful when used
– major gain in speed, logic density

• Are very wasteful when not used
• The logic area goes unused, but

worse…

Programmable Routing is Wasted!

• 70%-90% of FPGA area is routing!
• Everyone pays for hard structures

– but not everyone can use all of them

What can we do about waste?

Try to employ unused hard structures
1. Use multiplier as barrel shifter

• [Gigliotti, 2004]
2. Use memory block as lookup table to

implement combinational logic
• [Wilton, 2002; Cong and Xu, 2000]

Our Idea
• Employ unused multipliers to implement

multiplexers
– Saves programmable logic

• Multiplexers are common in many
applications:
– Networking
– Processors
– Many kinds of datapath

How to Make Multiplexers from
Multipliers

Recall:
– multiply a number by 2n shifts the binary

number by n bit positions
– we’re going to use it to make expensive

shifters/multiplexers
• Not actually expensive, since multiplier was

going unused!

Use Multiplier to Shift/Select

• Use shift to
select input to
pass through

1000

a0a1a2a3

a0a1a2a3

Multiplexer Select Signals

Multiplexer Output

20

Use Multiplier to Shift/Select

• Use shift to
select input to
pass through

0100

a0a1a2a3

a0a1a2a3

Multiplexer Select Signals

Multiplexer Output

21

0

Use Multiplier to Shift/Select

• Use shift to
select input to
pass through

0010

a0a1a2a3

a0a1a2a3

Multiplexer Select Signals

Multiplexer Output

22

0 0

Use Multiplier to Shift/Select

• Use shift to
select input to
pass through

0001

a0a1a2a3

a0a1a2a3

Multiplexer Select Signals

Multiplexer Output

23

0 0 0

Doesn’t look like a multiplexer

What we know:
• Multiplexer has

encoded select
signals

Encoded Select
Signals

Inputs Output

Multiplier select Requires
Decoded Selects

• Multiplier is only used
to select signal

• Requires that select
signals are decoded
in programmable logic

Inputs

DECODING
LOGIC

Encoded Select
Signals

Decoded Select
Signals

Output

Multiplier select Requires
Decoded Selects

• Multiplier is only used
to select signal

• Requires that select
signals are decoded in
programmable logic

• Decoding costs, but …

DECODING
LOGIC

Encoded Select
Signals

Decoded Select
Signals

OutputInputs

1. Can Amortize Decoding Logic

• For busses share
signals to
multiplex

• Only need to
generate decoded
selects once 4

DECODING
LOGIC

BUS
MULTIPLEXER

4

4

4

4

a

b

c

d

out

select1select0

2. Decoded Selects are Already
There!

• Imagine a one-hot
encoded state
machine
controlling the
output of an ALU

ALU output
bit 0

State
00001000

State
00100000

State
00000001

State
01000000

Adder output
bit 0

Logic output
bit 0

Multiplier
output bit 0

Shift output
bit 0

Issue: Speed

• How will mapping affect circuit speed?
– Example: 9:1 multiplexer

• Soft logic mux = 422 MHz;
• Built with 9*9 hard multiplier = 307 MHz.
• 115 MHz slowdown!

• Problem if employed on critical path, or
causes path to become critical

Mapping Algorithm

Input

• Netlist of gates and
some higher level
structures
– Logic
– Multipliers
– Memories
– Multiplexers

Output

• Similar netlist with
multiplexers mapped to
– hard multipliers or
– soft logic

SOFT

Goal of Algorithm

• Largest reduction in number of soft logic
elements used
– Potentially allow user to reduce part size,

save money

Step 1

• Group all multiplexers that share
common encoded select signals

Step 2

• For each group or multiplexer, estimate
the area saving
– Let

• CS(size) = cost of implementing soft
multiplexer

• CD(size) = cost of decoding logic
• |M| = number of multiplexers in a group

– SAVINGS = (ΣCS(size) – CD(size)) / |M|

Step 3

• Sort the groups and multiplexers in the
order from greatest savings to least
savings

Step 4

• Remove from list multiplexers on path
that includes a multiplier
– Hard multipliers often sit on critical path
– Heuristic avoids speed reduction

Step 5

• Greedily select most-beneficial
multiplexers to map

• Go back to step 4
• Finish

– when no unused multipliers left
– When no multiplexers left to map

Experimental Setup

Experimental Setup

• Will compare with and without mapping
• FPGA Used: Stratix I
• CAD Flow based on Altera Quartus 4.1

CAD Flow

• New front-end synthesis
– Odin [FPL 2005]

• Plugs into Quartus back-
end from logic synthesis
down

Quartus - Logic optimization

Quartus - Technology map

Quartus - Pack logic blocks

Quartus - Place logic blocks

Quartus - Route logic blocks

FPGA programming file

HDL Description

Odin - Elaborate

Odin - Partial Map

Benchmarks
• Collection of Verilog Benchmarks

– Opencores
– SCU-RTL
– Texas-97
– Benchmark Suite for Placement-2001
– Local designs converted from VHDL

• Raytrace
• Molecular Dynamics
• Stereo Vision

• Results are dependent on these benchmarks

Results

• Will present results separately for
benchmarks with and without multipliers

Results – Benchmarks without
Multipliers

Benchmarks
Percent

reduction in
LEs

Percent
Speed
Gain

cordic_8_8 4% -149%
cordic_18_18 1% -25%
MAC1 5% -40%
MAC2 2% -12%
des_area 18% 5%
des_perf 5% -145%
sv_chip0 1% -30%
sv_chip0_no_mem 1% -46%
sv_chip3_no_mem 19% -168%
rt_frambuf_top 9% -58%
rt_frambuf_top_no_mem 1% -76%
rt_boundtop 2% -31%
rt_boundtop_no_mem 5% -33%
Geometric Average 6% -54%

• Average
reduction in
LEs: 5.8%

• Average
reduction in
speed: 54%

Results – Benchmarks with
Multipliers

Benchmarks
Percent

reduction in
LEs

Percent
Speed
Gain

fft_258_6 1% 1%
iir1 0% 1%
iir2 11% -1%
fir_3_8_8 0% 0%
fir_24_16_16 0% 0%
fir_scu_rtl 42% -13%
diffeq_f_systemC 7% 0%
diffeq_paj_convert 12% 0%
sv_chip1 0% -1%
rt_raygentop 5% 3%
rt_raygentop_no_mem 5% -3%
oc45_cpu 6% 5%
reed_sol_decoder1 8% -1%
reed_sol_decoder2 5% 1%
md 0% 0%
Geometric Average 8% 0%

• Average
reduction in
LEs: 7.6%

• Average
reduction in
speed: %0.5

Summary

• Technique reduces Logic Element
Count by 6.8% on average across all
benchmarks

• Reduction in speed varies:
– Benchmarks that already employ

multipliers almost no loss in speed
– Benchmarks w/o multipliers: 54% reduction

Future Work

• Technique should improve if we can
estimate speed of circuit paths at front-
end

• Should architect a better hard structure
that are more widely usable

