R
ECECTRICAL

COMPUTER
ENGINEERING

Mapping Multiplexers onto
Hard Multipliers in FPGASs

Peter Jamieson and Jonathan Rose

The Edward S. Rogers Sr. Department of Electrical
and Computer Engineering

University of Toronto

Consist of:

1. Programmable logic
and routing

» soft logic fabric

2. Less-programmable
dedicated circuits

* hard structures
o e.g. multiplier
e e.g memory block

Modern FPGASs

SOFT SOFT SOFT SOFT SOFT
LoGIc|||lroaic ||| Locic LoGIc ||| LoaIc
sorT ||l sorT || soeT SOFT =
LoGIc|||lroaic ||| Locic LOGIC c§>
Py
.<
= o
SOFT m SOFT SOFT o
LOGIC g LOGIC LOGIC O
~
Py
=<
o
SOFT o SOFT SOFT ||/|| SOFT
LOGIC gg LOGIC LoGIc ||| LoaIc
SOFT SOFT SOFT SOFT SOFT
LoGIc|||llLoaic ||| LoGIC LoaGIc |||l LocIic
SOFT SOFT SOFT SOFT SOFT
LoGIc|||lroaic ||| Locic LoGIc ||| Locic

FPGA Hard Structures

* Are very useful when used
— major gain in speed, logic density
 Are very wasteful when not used

 The logic area goes unused, but
worse...

Programmable Routing is Wasted!

e 70%-90% of FPGA area is routing!

e Everyone pays for hard structures
— but not everyone can use all of them

What can we do about waste?

Try to employ unused hard structures

1. Use multiplier as barrel shifter
o [Gigliotti, 2004]

2. Use memory block as lookup table to
Implement combinational logic
o [Wilton, 2002; Cong and Xu, 2000]

Our Ildea

 Employ unused multipliers to implement
multiplexers
— Saves programmable logic
 Multiplexers are common in many
applications:
— Networking

— Processors
— Many kinds of datapath

it

How to Make Multiplexers from
Multipliers

Recall:

— multiply a number by 2" shifts the binary
number by n bit positions

—we're going to use it to make expensive
shifters/multiplexers

* Not actually expensive, since multiplier was
going unused!

Use Multiplier to Shift/Select

e Use shiftto
select input to
pass through

a3 a2 al a0
Multiplexer Select Signals
| o) || o) || 0 I 1 I
20
a2 al aO

Multlplexer Output

Use Multiplier to Shift/Select

e Use shiftto
select input to
pass through

a3 a2 al a0
Multiplexer Select Signals
| 0 || 0 || 1 I 0 I
21
a2 |lal aO O

Multiplexer Output

Use Multiplier to Shift/Select

e Use shiftto
select input to
pass through

a3 a2 al a0l

Multiplexer Select Signals

nann

\ X/

a3 a2jal ja0 0 O
Multiplexer Output

22

Use Multiplier to Shift/Select

e Use shiftto
select input to
pass through

a3 a2 al a0l

Multiplexer Select Signals

Bonn

23

a3 a2 alja0jo O O

Multiplexer Output

Doesn’t look like a multiplexer

What we know:

Encoded Select
Signals

* Multiplexer has
encoded select \I\I\
signals

Output

_/

TR i

uItipIier select Requires
Decoded Selects

Encoded Select
Signals

o Multiplier is only used ||
to select signal

* Requires that select

signals are decoded _\uui“%?gﬁaie'eCt
In programmable logic

Inputs

DECODING
LOGIC

Output

_/

TR i

uItipIier select Requires
Decoded Selects

Encoded Select
Signals

o Multiplier is only used |
to select signal cOBING

« Requires that select o

signals are decoded In _\u”fgﬁgﬁaie'ect
programmable logic
Inputs

 Decoding costs, but ... & —

_/

Output

1. Can Amortize Decoding Logic

e For busses share
signals to
multiplex

 Only need to
generate decoded
selects once

selectO selectl

DECODING
LOGIC

i

bJF

N

BUS 4

MULTIPLEXER+ out

c

—
dJFI/ L e e S Tl

Therel

State State State
00001000 00100000 01000000 00000001

» Imagine aone-hot [} [} [}

encoded state

Decoded Selects are Already

State

LI

Uy

machine
controlling the Adder output
bit 0
OUtpUt Of an ALU Logic output
bit 0
Multiplier
output bit O
Shift output
bit 0

ALU output
bit O

Issue: Speed

 How will mapping affect circuit speed?

— Example: 9:1 multiplexer
« Soft logic mux = 422 MHz;
 Built with 9*9 hard multiplier = 307 MHz.
e 115 MHz slowdown!

* Problem if employed on critical path, or
causes path to become critical

Mapping Algorithm

Input

* Netlist of gates and
some higher level
structures
— Logic
— Multipliers
— Memories
— Multiplexers

Output

e Similar netlist with
multiplexers mapped to

— hard multipliers or
— soft logic

Goal of Algorithm

e Largest reduction in number of soft logic
elements used

— Potentially allow user to reduce part size,
save money

Step 1

e Group all multiplexers that share
common encoded select signals

Step 2

e For each group or multiplexer, estimate
the area saving

— Let

» CS(size) = cost of implementing soft
multiplexer

e CD(size) = cost of decoding logic
e IM| = number of multiplexers in a group

— SAVINGS = (ZCS(size) — CD(size)) / M|

Step 3

e Sort the groups and multiplexers in the
order from greatest savings to least
savings

Step 4

 Remove from list multiplexers on path
that includes a multiplier

— Hard multipliers often sit on critical path
— Heuristic avoids speed reduction

Step 5

o Greedily select most-beneficial
multiplexers to map

« Go backtostep 4

e Finish
—when no unused multipliers left
— When no multiplexers left to map

Experimental Setup

Experimental Setup

o Will compare with and without mapping
 FPGA Used: Stratix |
e CAD Flow based on Altera Quartus 4.1

CAD Flow

 New front-end synthesis
— Odin [FPL 2005]
e Plugs into Quartus back-

end from logic synthesis
down

HDL Description)
J

Odin - Elaborate

J
Odin - Partial Map

[FPGA programming file)

Benchmarks

e Collection of Verilog Benchmarks
— Opencores
— SCU-RTL
— Texas-97
— Benchmark Suite for Placement-2001

— Local designs converted from VHDL
* Raytrace
* Molecular Dynamics
« Stereo Vision

 Results are dependent on these benchmarks

Results

o WIll present results separately for
benchmarks with and without multipliers

Multipliers

Percent Percent
Benchmarks reduction in Speed
LEs Gain
cordic 8 8 4% -149%
cordic_18 18 1% -25%
MAC1 5% -40%
MAC2 2% -12%
des_area 18% 5%
des_perf 5% -145%
sv_chip0 1% -30%
sv_chip0_no_mem 1% -46%
sv_chip3_no_mem 19% -168%
rt_frambuf_top 9% -58%
rt_frambuf top_no_mem 1% -76%
rt_boundtop 2% -31%
rt_boundtop_no_mem 5% -33%
Geometric Average 6% -54%

e Average
reduction In
LES: 5.8%

e Average
reduction In
speed: 54%

ults — Benchmarks with
Multipliers

Percent Percent

Benchmarks reduction in Speed

LEs Gain
ffit_ 258 6 1% 1%
iirl 0% 1%
jir2 11% -1%
fir 3 8 8 0% 0%
fir 24 16 16 0% 0%
fir_scu_rtl 42% -13%
diffeq_f systemC 7% 0%
diffeq_paj_convert 12% 0%
sv_chipl 0% -1%
n_raygentop 5% 3%
rnt_raygentop _no_mem 5% -3%
oc45 cpu 6% 5%
reed_sol decoderl 8% -1%
reed_sol _decoder2 5% 1%
md 0% 0%
Geometric Average 8% 0%

e Average
reduction In
LES: 7.6%

e Average
reduction In
speed: %0.5

Summary

e Technique reduces Logic Element
Count by 6.8% on average across all

benchmarks
* Reduction in speed varies:

— Benchmarks that already employ
multipliers almost no loss in speed

— Benchmarks w/o multipliers: 54% reduction

Future Work

e Technique should improve if we can
estimate speed of circuit paths at front-
end

e Should architect a better hard structure
that are more widely usable

