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Universidade Federal de Viçosa, Brazil.
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Abstract—We ask the question, ”should High-level Synthesis
(HLS) design be part of an undergraduate computer engineering
education while learning digital system design?”.

Current trends in industry include an increasing demand for
engineers who can build FPGA systems. FPGAs, just like other
chips, continue to improve in terms of complexity, speed, available
resources, and new features. The design complexity for using an
FPGA continues to grow and Hardware Description Languages
(HDLs), though a step up in design efficiency compared to
schematic design, is a low-level approach akin to assembly
language for programmers, and HDLs limits the productivity of
an engineer. HLS tools, such as Legup, Intel HLS, and Xilinx’s
Vivado attempt to provide designers with a higher-level design
abstraction providing a means to describe their computation in
high-level languages - such as C. As these tools become more
mainstream in industry, when should education follow?

In this work, we explore how HLS tools might be used by an
undergraduate by looking at exemplar designs, a simple RISC-
V processor and a basic C loop, and implementing the design
in both HDL and HLS. We then analyze the FPGA cost of
each implementation. Next, we provide a philosophical discussion
based on this experience on what the pros and cons of moving
students to HLS design abstraction level are.

I. INTRODUCTION

FPGA design and the use of prototyping boards are common
topics and pieces of hardware in higher-education engineering
schools as a substitution for VLSI design. First, FPGAs allow
complex designs to be implemented, tested, and designed in
university undergraduate labs at a reasonable cost because
FPGA companies produce their chips and CAD software for
low-volume customizable applications - exactly the scenario
in an undergraduate lab. FPGA prototyping boards and de-
signing for them is a ’democratization’ of Integrated Chip
(IC) design similar to what microprocessors and the personal
computer ’democratized’ computing and programming. There
is a demand for engineers who can create designs on FPGAs,
and we, as educators and practitioners, need to constantly ask
what aspects of design should be introduced and exposed in
undergraduate education.

At this moment in time, we believe an important question
is, should High-level Synthesis (HLS) design be part of an
undergraduate computer engineering education with respect to
what they learn in digital system design? HLS tools are a major
efforts in the Electronic Design Automation (EDA) industry

to allow software engineers to use programming languages
to describe and implement hardware. In some circles this
is known as “C-to-gates”, and HLS is about using a high-
level language that is a more traditional software programming
language and automatically analyzing the program to create a
low-level hardware implementation of the design on an FPGA
or an ASIC. Presently, a large portion of EDA desgin is done
via Hardware Description Languages (HDLs) such as Verilog
HDL [1] and VHDL [2].

This paper examines this question from a pedagogical pros
and cons perspective by leveraging the experience from an
experiment we did in the past year. In particular, we had an
undergraduate student implement a RISC-V processor [3] and
a simple looped design in both HDL and C for an HLS flows
to experience the two design methodologies. Additionally,
because we target the same FPGA we can explore the one-off
efficiency cost of moving to a higher-level design abstraction.

From this activity we present the basic ideas of the differing
design approaches, an analytical comparison of the designs
on the same target FPGA, and a pedagogical discussion of
the pros and cons of the approach. Using this discussion, we
then propose how HLS could be added to the undergraduate
computer engineering curriculum in terms of what topics
would be removed. In a constantly adapting profession, such
as computer engineering, we believe exercises such as these
are fundamental in experimentally questioning what aspects of
innovation should be adopted into the curriculum.

II. BACKGROUND

Within computer engineering undergraduate education, a
major focus is on building digital systems to perform compu-
tation for various applications and solutions. Within the sug-
gested curriculum [4] released in coordination with both the
IEEE and ACM in 2016, the “CEC-DIG” category (refering to
digital systems) is one of the twelve major knowledge areas
that a computer engineer should be exposed to, and digital
system concepts and ideas are fundamental in all the other
areas from embedded systems to information security.

The above document is an excellent reference for computer
engineering undergraduate curricula, and for the CE-DIG 50
core hours, it is broken up into the following knowledge
components as follows:
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• CE-DIG-1 - History [1 hr.]
• CE-DIG-2 - Tools and standards [2 hr.]
• CE-DIG-3 - Number systems and encodings [3 hr.]
• CE-DIG-4 - Boolean algebra applications [3 hr.]
• CE-DIG-5 - Basic logic circuits [6 hr.]
• CE-DIG-6 - Design of combinational circuits [8 hr.]
• CE-DIG-7 - Design of sequential circuits [8 hr.]
• CE-DIG-8 - Control and datapath design [9 hr.]
• CE-DIG-9 - Design with programmable logic [4 hr.]
• CE-DIG-10 - System design and constraints [5 hr.]

From a design language learning perspective, the document
includes the prescribed use of HDLs including both Verilog
HDL and VHDL, and there is a brief mention of schematic
entry for low-level gate based systems.

We will make the assumption that all the above topics are of
relevance to an undergraduate computer engineer. The question
that we want to ask is when does the new design approach,
HLS design, suggest that we spend less time on showing how
to design these systems with HDL and schematics and shift
to the designer efficient enabled with HLS?

Technological adoption into education is a constant debate
among educators. The question of students using computers
and calculators in the classroom for mathematics is one
example of a these debates as to what is the student learning,
and we, likely, had these same debates when an abacus, and
paper and pencil were invented [5].

Over the last 20 to 25 years we have seen HDL languages
and other ideas introduced into digital systems education.
Takach and Moser [6] looked to improve digital systems
design course, and Areibi [7] was one of the first authors to
puclish work on using both HDL and programmable logic
systems within these courses. Since then various approaches
to improving students performance in this space have been
attempted including a better understanding of HDL [8], com-
puter architecture design with HDLs [9] [10], games [11] [12],
and visualization techniques [13].

A. HLS for Digital System Design

In 2018, an article by Sakari et al. [14], asked the question
is HLS ready in industrial design. This seems to make our
question, from an educational perspective, a little presumptive
as the technology seems to still be emerging in the quicker
adopting industry domain. However, not only should academia
stay abreast of what is happening in industry, but we should
make similar endeavors with regards to these questions, par-
ticularly when there is a significant designer efficiency benefit.

Figure 1 shows a portion of Gajski-Kuhn Y-chart for VLSI
design. The main difference between HDL languages and HLS
is it shifts the abstraction more to behavioral and algorithmic
descriptions and less structural components. HDLs allow for a
range of structures to be described, and VHDL, in particular,
has a very large range of what can be described and simulated
- as this was the intention of the language. With an HLS lan-
guage the designer moves away from describing the hardware
implementation details and leaves this to the tools.

In the process of creating a hardware design from a higher

Fig. 1. Gajski and Kuhn Y-chart for VLSI design [15]

level programming language a number of phases need to be
executed including: Traditional front-end parsing, Allocation,
Scheduling, Binding. These steps are needed since the target
architecture is an open target [16] and the tool needs to
determine what functional units will be created and who will
use them throughout the execution of the computation.

There are a vast number of HLS tools both in academia, for
example, Legup [17] and Bambu [18], and in Industry Xilinx’s
Vivavo [19], Intel’s HLS tool [20], and a commercialized
version of Legup [17]. There are many more tools than these
4 and recent surveys by Nane et al. [21] and Huang et al.
[22] includes more details about HLS and ongoing research
questions.

This work uses both Bambu and Legup mainly because
these tools can target any FPGAs, whereas the tools from Intel
and Xilinx seem to be targeting specific FPGAs that are more
expensive and less likely to be adopted in university labs.

III. HLS AND HDL IMPLEMENTATION OF SIMPLE DESIGNS

In this section, we provide a description of our small
exemplar designs - RISC-V and a loop - and show how our
two approaches perform on the FPGA via the two CAD flows
(with HLS front-end(s) and one with straight HDL designs).

A. RISC-V processor architecture

To help us examine the question of including HLS as a
portion of an undergraduate computer engineers digital system
education, we will use a RISC-V processor architecture. We
follow the suggestions provided in McGrew et al. work on how
to design a RISC-V architecture as an undergraduate including
tools to use to test and verify the system [10]. This provides
us with a simple processor that we would expect most second
year undergraduate students to be able to build in an HDL.

The first exercise is to build an HDL version of the pro-
cessor. This process is a common design activity towards the
end of a first year course on digital system design. Normally,
students would be exposed to registers, control signals, and an
Arithmetic Logic Unit (ALU) as bridging exercises between
combinational circuit and sequential circuit design. From these
exercises, it is not hard to extend the system a little further to
create a simple processor. In our case, we use the a subset of
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TABLE I
RISC-V RESULTS OF CAD FLOW ON INTEL FPGA FOR EACH FLOW

Design Entry Logic Elements Registers Memory Bits 9x9 Multipliers Fmax
Bambu 3472 1188 263168 6 102.32 MHz
Legup 2375 761 295936 6 75.71 MHz
VHDL 3747 1334 294912 6 98.61 MHz

the RISC-V architecture, implement the memory file on on-
chip FPGA RAM, and piece together the ALU, register file,
memory, and a controller.

We found it is a more challenging exercise to try and
implement the same processor in C programming language
such that it can be synthesized by both Legup’s commercial
version and Bambu for our target FPGA. To achieve this,
we design the processor as a RISC-V emulator. This means
that a controlling loop is used to fetch, decode, and execute
instructions as fetched from a pre-initialized array (or mem-
ory). We, loosely, define this an the emulation of the RISC-V
processor [23] and it is related to the wide hobby interest in
emulation; however, it is interesting to ask are we emulating
if we are writing in a form that the compiler then converts
into hardware? As hardware designers creating an emulator in
software is a strange experience.

We created implementations of the three systems, noting
that the Bambu and Legup designs are very similar and are
both written in C. All three can be accessed at BLIND.

To evaluate our circuits, we target the Cyclone IV
EP4CE115F29C7 Intel FPGA that is available on Terasic’s
DE2-115 Development board. This is an older development
board that is not that expensive (approximately 300 USD).
We use Quartus 16.1 CAD flow to synthesize and map the
design to this FPGA once it is in an HDL form suitable for
this flow. For HLS we use the respective Legup or Bambu tool
on Windows and Linux, respectively, and these tools similarly
map the design using Quartus.

Table I shows the results of our designs for each of the
flows. The first column describes each design entry format,
columns 2 through 5 shows the resource consumption on the
FPGA, and the last column shows the maximum frequency
that the circuit can operate at.

In general, even though we can see differences in Table
I for each of the flows, we do not see a clear benefit in
terms of speed and area for the HDL version as might be
expected. Instead, we see small differences that we believe
may be eliminated if significant time was spent determining
how each of the HLS flows perform their analysis and mapping
of the software. For this type of design, the main result is that
there is not significant differences between the three designs
when we understand that a trade-off can be made for less area
at a slower speed.

From a design efficiency perspective, we only have anec-
dotal results. It only took 2 weeks to create the C version
of the RISC-V architecture compared to one month for the
HDL version. There is a minor caveats with this result - the C
version was created after the HDL version was built and the
designer had additional experience both with the design and

the FPGA flow while creating the HLS design version.

B. Looping Example

The previous exemplar design is not a great demonstration
of the strength of HLS tools as the design, when written in
C, represents and emulation of hardware as opposed to a
programmers code description of an algorithm that is then
transformed into a hardware implementation. In this section,
we look at a simple loop construct and perform a similar
experiment as above by comparing the design implemented
for Legup versus an HDL implementation.

Algorithm 1 Simple Looping Benchmark
1: for (i = 0; i < N; i++) do
2: c[i] = a[i] * b[i];
3: sum += c[i];
4: end for

Algorithm 1 shows the C code we want to execute. It is
very simple and was taken from the Legup 7.0 documentation
as an example as there is no need to create a completely new
example. Using the C version as the template, we implemented
an HDL version of the same example with a finite state
machine, but used the memory controller and wrapping logic
created by the Legup flow.

Table II shows the results of each of the two instances. In
both cases, the designs result in very similar FPGA resource
usage and speed. The HDL one is slightly larger and slower.
The real difference in this design problem is the design time
where the HLS provides significant benefits compared to hand
coding the finite state machines for the program. The C
benchmark was a turnkey design in Legup and just took the
time for the tool to synthesize. Converting the C code into
Verilog took around thirty minutes of design and testing, and
we note that this was for a very simple benchmark. We did
not look into optimization for either flow.

IV. DISCUSSION

To start our discussion on whether to include HLS design as
part of an undergraduates exposure to digital system designs,
we will create a discussion of the pros and cons to the
approach. In particular, we are interested in the questions of
”designer efficiency”, ”system efficiency”, ”debugging capa-
bilities”, ”accessibility for the learner”, and ”understanding
the final hardware product”. By looking at each of these areas,
we begin to understand the trade-offs of this approach. Finally,
we will conclude this section by showing that based on the
discussion and the target industries and graduate schools for
an institutes undergrads the answer to this question changes.

Designer Efficiency: the main reason to consider introduc-
ing HLS design at the undergraduate level is the potential
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TABLE II
LOOP BENCHMARK RESULTS OF CAD FLOW ON INTEL FPGA FOR EACH FLOW

Design Entry Logic Elements Registers Memory Bits 9x9 Multipliers Fmax
Legup 64 47 0 0 291.29 MHz
Verilog 69 47 0 0 287.26 MHz

improvement on how quickly students can design their digital
systems. In theory, designer efficiency is improved by using
HLS assuming first, the user is familiar with C programming
(or instead, will learn this competency as they learn HLS),
and second, using the HLS tool and writing their design in C
will in a reasonably efficient hardware implementation. Next,
the user will need to familiarize themselves with the HLS tool,
and more importantly, will need to learn how to create designs
so that the tool can make efficient hardware implementations
as they improve their own skill using the tool. Both of these
needs will come at a time cost for the designer to learn, but
once mastered should result in a significant designer efficiency
improvement over HDL designs.

System Efficiency: already partially described earlier, the
designer must learn to implement the design efficiently. Even
by being knowledgeable with the HLS tool, we still expect
some inefficiencies in the design. This is similar to the effi-
ciency losses in using high-level languages that are compiled
compared to assembly language due to automation and missed
optimizations, the same will be true going from HDLs to
HLS implementations. However, from our small exemplar
applications, it is not evident that this will always be the case
as a huge factor in this is the designers skills and experience,
which an automated tool could hide.

Debugging Capabilities: when teaching digital systems and
design with HDLs there is a disconnect between the realized
hardware and what the designer is describing. Some teachers
try to have students be able to recreate a schematic from
Verilog or VHDL and there are a number of tools that can
help in this visualization process (for example DigitalJS [13]).
By using HLS tools we now have another level of indirection
between the actual hardware and the design because the tool
allocates/schedules/binds hardware components.

So understanding what is created from the design has a
disconnect, and the next challenge is debugging functionality.
There is some work on debugging HLS designs [24], but the
level of indirection and the disconnect between simulation and
synthesized hardware may be hard for a learner to understand.
By using HLS tools, there is potential downside that designers
will treat their resulting designs as more black-boxes than
would typically be done with HDL designs, though using
HDLs already introduces this challenge.

Accessibility for the learner: FPGAs and the software tools
are relatively cheap and are available for undergraduates to
access and work with giving them access to quality industrial
CAD and parallel programming tools [25]. Both Xilinx and
Intel’s HLS tools, however, are targeted to very specific FPGA
families that they release, which reduces accessibility making
undergrads use simulation only. The Legup commercial tool
allows most FPGAs to be targeted, but has a licensing costs

as this company is attempting to create a viable business.
Therefore, using HLS tools for undergraduate education does
come with an additional financial cost.

Understanding the final hardware product: as we have
already discussed, there is a trade-off in what the designer
understands of the final hardware product produced from an
HLS tool compared to their understanding of the hardware
generated from HDL as their is a tighter one-to-one matching
for the later. However, optimizations from a HDL design can
obfuscate hardware designs even for HDL designs. As com-
plexity of design increases, then there is a larger disconnect
between product and design.

In general, teaching HLS design to undergrads means that
we will, eventually, improve the designer efficiency at the cost
of having less understanding of the final hardware artifact and
incurring additional non-recurring engineering design costs.
At this moment in time, we do not believe that HLS design
should be taught to all undergraduates, but this question should
be revisited in five years. There has been a shift in computer
science and software engineering programs away from under-
standing software and its interaction with the CPU/computer.
For some computer engineering programs we are also seeing
a shift where embedded system design is more the goal as
opposed to the lower level components [26]. For this shift
learning more about how to use HLS to create quick hardware
implementations of systems might make sense, and there exists
research that is implementing HLS curriculum’s [27].

Additionally, the question of what components of the ex-
isting curriculum could be shifted to spend on HLS design
includes modifying “CE-DIG” 6 through 10. We expect that
ideas of parallelism and acceleration will be further empha-
sized, focused on, and practiced with in computer engineering
curriculum as a focus shifts to cloud computing. The choice
of which tools including HLS, GPU coding, and cloud accel-
eration tools will need to be revisited and, likely, more time
will need to be spent on this in the curriculum.

V. CONCLUSION

In this work, we examined the question of whether the
improvements and the rise of HLS tools for FPGA and ASIC
design means we should include this in computer engineers
education. We investigated some exemplar low-level HLS
versus HDL designs that might be done at a 2nd year level,
and we observed and commented on the exercise and the state
of these tools. Our conclusion is that HLS tools are on the
cusp of being part of the undergraduate education curriculum,
but as of now the trade-offs are still in favor of teaching HDL
digital system design.
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