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Abstract—We describe a progressive philosophy to help bench-
mark systems and designs in the High Performance Computing
(HPC) domain. These systems now include heterogeneous multi-
node systems where nodes can include combinations of CPUs,
GPUs, FPGAs, and other emerging computing devices. Because
of the heterogeneous nature of these systems, benchmarking
and comparison of systems is an ever increasingly complex
process. Currently, there is no benchmark or other process
that results good comparisons. We introduce a set of tenets
that will allow us to compare one system to another and to
include tool innovations. These tenets rely on our research
community providing what we call a system context and an
instance of a specific design (benchmark). A better benchmarking
process will make our future research stronger scientifically, and
will allow us to improve future systems, their accompanying
compilation/synthesis tools, and the designs that execute on these
systems. To achieve this, we survey existing benchmarks and their
accompanying philosophies, and we describe our conceived ideal
benchmarking scenario with a set of tenets, some definitions,
a methodology, and a discussion that we hope will guide our
research community forward.

I. INTRODUCTION

One of the fundamental question in computer engineering
is how does an application design and the platform on which
it executes compare with other designs and systems? When
focusing on just the comparison of computing systems, we use
a process called benchmarking where, typically, a benchmark
suite is implemented on the systems under comparison and
metrics generated to compare them. This approach works well
when comparing similar computing architectures, especially
when the benchmarks can be written in a common language
and there are obvious problem sizes. But the challenge be-
comes significantly harder when architectures with substantial
variation, e.g., CPUs vs GPUs vs DSP chips, are compared.
The problem is much worse when FPGAs or custom chips are
included; this is because the hardware fabric itself is open for
variation of architecture coupled with design.

Currently, there are a number of HPC systems emerging
that contain nodes with a heterogeneous mix of CPUs, GPUs,
FPGAs, and other devices in various architectures including
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clusters with mixes of these nodes. In other words, the bench-
marking problem continues to become more complex since
these systems are accompanied by multiple compilation/syn-
thesis tools that map designs to the target system (including
various computing chips), include different communication
technologies and interconnects, and include a range of other
differences. How can we compare these systems?

With such a rapidly changing field and with such flexible
target architectures, other questions arise. How can we show
improvement a particular application design? That improve-
ment is likely to contain innovation in algorithm, partitioning,
load balancing, and many other optimizations. Is it possible to
separate these optimizations from changes in technology? In
many cases, the new and reference (old) implementations of a
designs are implemented on very different systems. Recreating
the reference implementation on the new system is likely to
be extremely time-consuming, if it is possible at all.

In this paper, we provide some initial insight, discussion,
and ideas on how our research community can help solve
these comparison problems. To do this, we survey a wide
range of existing benchmarks, including their innovative ideas
and philosophies. From this survey, we derive an ideal bench-
marking situation, which includes a methodology, some key
definitions, and an accompanying philosophy. We then discuss
where current benchmarking and comparisons are still lacking
in bringing stronger scientific rigor to our field, which if solved
will help us build better systems, accompanying tools, and
more efficient applications in the future.

II. BENCHMARKING

Benchmarking is the process by which a System Under
Test (SUT) executes a defined input, known as a benchmark
(Benchmark), and outputs measurements (M easurements
+ Results). This comparison can be done for a number of rea-
sons such as comparing SUTs in terms of performance, power,
efficiency, scalability, or robustness. A benchmark can include
input data (Data) and an application design (Design) where
the input can take a variety of forms depending on the targeted
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Fig. 1. Basic benchmark executed and measured on SUT

SUTs. We refer to the benchmark input as the (Instance)
of the benchmark for future use. Figure 1 shows the typical
benchmarking setup. Hennessy and Patterson [1] provide a
good introduction to benchmarking computer systems.

A benchmark suite includes a collection of benchmarks
with various properties to exercise the SUT in various ways.
For example, to compare the execution time of System A
(SUT4) with System B (SUTg), where the SUTs are CPUs,
with a benchmark suite consisting of (Benchmarkx and
Benchmarky), which are programs written in the C lan-
guage, then we execute the benchmarks on each system, record
the execution times, and use the measurements (and statistical
methods) to analyze the results. If this process is formalized
in the benchmark suite, then we say that the suite has a
defined methodology (M ethodology), which includes details
such as whether the Instance is allowed to be modified
and how results should be reported. In this example, since
the benchmark suite includes executable benchmarks on both
SUTs, the benchmarking process is easy. The benchmark
suite only needs minor modifications to be instrumented for
capturing time measurements and compilation to the respective
SUT before executing.

A SUT can include various components including a variety
of computation chips (CPUs, GPUs, FPGAs, etc.), a variety
of meta-architectural technologies (communication, storage,
input and output devices, system level software), and a variety
tools to map aspects of the design to these technologies
(compilers, synthesis tools). As the diversity of SUTs increase
and new technologies emerge, so do the effect on applica-
tion performance of tuning, algorithm, other optimizations,
and varying capabilities of the computing SUT. Therefore,
understanding the capabilities of a SUT can be as important to
making sense of the results as understanding the benchmarks.
We call this the C'ontext of the SUT. Additionally, Context
of a SUT captures a historical record of the capabilities of that
system to help future comparisons that do not have access to
older systems.

In computer systems, the measurements (M etricOutputs)
of interest from a benchmark include, ideally, time (T") [1],
energy (F), and cost (C). The metrics can be described in
a variety of related terminology. For example, for FPGAs a
benchmark can include the maximum clock frequency, a power
profile given test input vectors, and fabric utilization. These
metrics, however, are not a direct representation of the ideal
metrics for time, energy, and cost, and the differences are
usually due to the difficulty of measuring ideal metrics (and

adopted practices).

A different use of SUTs and benchmarks is when the
comparison involves both benchmark and SUT. This is com-
mon when, for example, researchers want to compare an
application, such as the fast Fourier transform (FFT), which is
a family of algorithms, but can be implemented on the SUT
in different ways and potentially with different inputs. For
example, on an FPGA we implement the FFT using some
code that executes on a processor [2] but also a parallel
implementation [3]. Since both of these are implemented on
different FPGAs, both the benchmark Instance and SUTSs
Context differ making comparison even more difficult.

III. IDEAS FROM EXISTING BENCHMARKS

There are a large number of benchmarks for computing;
while we look at a large and representative number, this set
is not exhaustive. Also there are many ways to characterize
a benchmark. These are some important features as proposed
by Becker, et. al. [4]:

o Target: the elements and types SUT that will be bench-
marked and measured. This can include the measurement
of different aspects of the SUT.

o Composition: the types of benchmarks in the suite.
Micro-benchmarks - intended to test a small aspect of
the SUT. Kernels - small common components of ap-
plications. Applications - representative of common full
designs to problems. The benchmarks can be real or
synthetic and may have sub-characteristics that describe
details of the benchmarks. For example, in the Rodinia
benchmark [5] they use Kiviat plots to show an 8-axis
measure of their internal composition.

¢ Measurement Criteria: the type of measurement that the
benchmark is meant to test.

o Workload execution: how the benchmarks executes on
the SUT. This includes throughput, transaction based,
intermittent, or a mixture.

o Languages: the form of the design description as part of
the Instance.

o Data: the form of the input data as part of the Instance.

o Tools or Environment: specific restrictions that are im-
posed on the Context of the SUT.

¢ Methodology: whether the benchmark suite specifies an
exact Methodology that must be followed when bench-
marking a system.

o Run Report: whether the benchmark suite specifies a
specific template and way to report measurements (as part
of the Methodology).

Table I shows a subset of benchmarks. We focus on those
that are more relevant to HPC and reconfigurable applications.
We organize them into categories with the latest appearing
at the top of a category. We omit categories if their ideas
are subsumed elsewhere, e.g., HPC-GPU within other het-
erogeneous focused benchmarks such as HPC-Heterogeneous
(CPUs, GPUs). A significant portion of this table is based
on Becker, et. al. [41], but we have added more to the



TABLE I
THE SURVEYED BENCHMARK SUITES ORGANIZED INTO CATEGORIES

Benchmark \ Category \ Measurement Languages

Valar [6] HPC - Heterogeneous (CPUs, GPUs) performance OpenCL
OpenCL 13 Dwarfs [7] HPC - Heterogeneous (CPUs, GPUs) time OpenCL

Parboil [8] HPC - Heterogeneous (CPUs, GPUs) time C, OpenCL, CUDA
PBBS [9] HPC - Heterogeneous (CPUs, GPUs) time C++ with Intel Cilk Plus
SHOC [10] HPC - Heterogeneous (CPUs, GPUs) time OpenCL, CUDA, MPI
Rodiani [5] HPC - Heterogeneous (CPUs, GPUs) performance, power OpenMP, OpenCL, CUDA
Spector [11] HPC - FPGA time OpenCL

CHO [12] HPC - FPGA time OpenCL
IMSuite [13] HPC - Parallel CPUs performance X10, HJ
HPGMG [14] HPC - Parallel CPUs performance MPI

HPCG [15] HPC - Parallel CPUs performance OpenMP, MPI
Graph500 [16] HPC - Parallel CPUs time C, OpenMP, MPI
MPAC [17] HPC - Parallel CPUs performance -

HPCC [18] HPC - Parallel CPUs time C, BLAS, MPI
HPL [19] HPC - Parallel CPUs performance, accuracy MPI, BLAS

SPEC MPI2007 [20]

SPEC OMP [21]

NAS Parallel [22]

Genesis [23]

HINT [24]

SLALOM [25]

LAPACK [26]

Lawrence Livermore Loops [27]

HPC - Parallel CPUs
HPC - Parallel CPUs
HPC - Parallel CPUs
HPC - Parallel CPUs
HPC - Parallel CPUs
HPC - Parallel CPUs
HPC - Parallel CPUs
HPC - Parallel CPUs

time
time

MPI, C, C++, Fortran
OpenMP, C, Fortran

performance MPI, OpenMP, Java, High Performance Fortran
performance Fortran
performance -
performance -
time Fortran
performance -

EEMBC [28] Processors

performance, energy -
C, C++, Fortran

SPEC CPU2006 [29],[30] General Purpose performance

SPEC JVMO98 [31] General Purpose performance Java
Fhourstones [32] General Purpose performance C, Java, Haskell
BDTi Video Kernel [33] Semiconductor Devices performance, cost, energy C
IWLSO05 [34] Semiconductor Devices speed, area RTL HDL
ITCO2 [35] Semiconductor Devices - module netlist
Placement01 [36] Semiconductor Devices speed, area, power RTL HDL
SCU-RTL [37] Semiconductor Devices speed, area, power RTL HDL
ITC99 [38] Semiconductor Devices speed, area RTL HDL
picoJava [39] Semiconductor Devices speed, area RTL HDL
ERCBench [40] Embedded Systems, Reconfigurable performance, power RTL HDL

GroundHog [41] Embedded Systems, Reconfigurable

BDTi DSP Kernel [42] DSP
BDTi Communications [43] DSP, FPGAs
RAW [44] Reconfigurable

performance, cost, area, energy

power Algorithm, C, RTL HDL
C

number of channels
performance

C, matlab
C, RTL HDL

HPC domain and removed some other categories and older
benchmarks.

These data illustrate the range of benchmarks that have been
created for just a subset of potential computational research
areas. Also, for systems including reconfigurable components,
one should note the wide variety of design languages, which
means SUTs could be impacted by the tools that map designs,
as much as the hardware to which they are mapped. Finally,
some important metrics are rarely included. Most benchmarks
focus on performance with substantial emphasis also on power
and energy. But engineering practice always includes cost as
first order concern; this tends to be very difficult to quantify
and so is rarely included in benchmarks outside chip-level
research.

IV. IDEAL BENCHMARKING AND COMPARISON FOR
HETEROGENEOUS HPC SYSTEMS

In this section, we describe our characterization of the ideal
benchmark for targeting various architectures and application
designs with a fair comparison methodology. While this ideal
is not always possible, we believe that research in computation
should strive towards the ideal as it will help all the community

in improving, comparing, and understanding our current state-
of-the-art solutions. Using ideas from the surveyed bench-
marks (Table I) and drawing insights from our work and
others’ [45], [46], we believe the tenets of ideal benchmarking
are as follows:

1) Openness - Benchmark Instance should be released
open source so that the results can be replicated and
analyzed.

2) Fairness - SUT comparisons should be fair in terms
of reporting optimizations to the benchmark Instance
and avoiding cheating in terms of SUT exploitation of
benchmarks for benchmarking sake [47].

3) Complexity - The benchmark represents the computing
challenges of interest and are large enough to exercise
the capabilities of the SUTs. This needs to address
coverage, which needs to be community defined as the
view on Parallel Dwarfs has started [48].

4) Explicit Methodology - The details should be explicit on
how the benchmark is to be measured and what needs to
be reported. This should include what aspects of the SUT
should be included in the measurements. For example,



can initialization of the problem be ignored or is it part
of the benchmark, and therefore, part of an execution
measurement?

5) Meaningful Measurement Metrics - The measurements
should reflect the physical and real world as much as
possible.

6) SUTs Context - The details about the system are
released, such that the SUT can be analyzed in terms of
its capabilities. Additionally, this should describe what
aspects of the SUT are measured. For example, in an
energy measurement, does energy measured include the
fans used for cooling the SUT?

Other researchers in benchmarking have suggested other
important characteristics. For example, in the survey of HPC
benchmarks for the Army by Infantolino, et. al. [49], they want
benchmarks that have sufficient coverage of behaviors, indus-
try acceptance, and applicability to different architectures. The
Parboil [8], PBBS [9], and Rodinia [5] benchmarks attempt to
solve a subset of this challenge with GPUs by supplying both
CUDA (NVidia) and OpenCL (Intel) GPU source files. This
is a valid approach for GPUs where there is a small set of
target languages and where the SUTs have a well-understood
core set of characteristics. The IMSuite [13], HPCG [15],
Graph500 [16], HPCC [18], and NAS Parallel [22] bench-
marks use multiple parallel programming languages in a
similar fashion. However, the number of SUTs and the variety
of design languages used to map designs to them, means that
multi-language benchmarking is of less use.

A. High-level benchmarks

As heterogeneous HPC systems continue to emerge, includ-
ing large clusters of multichip cores (of different chip types)
the possible range of systems to benchmark seems intractable.
The GroundHog [50] approach to high-level descriptions for
benchmarks, where researchers release their own versions of
their specific designs, seems to be the only way forward in an
open target SUT world. GroundHog focuses on mobile appli-
cations with chips such as FPGAs, microprocessors, and DSP
processors, and provides high-level algorithmic descriptions
and example implementations; they also provide a means to
stimulate and test the SUT. This approach, however, results
in significant work for researchers, but as the community
adopts this approach a codebase of solutions emerges that
helps the next generation in implementation. In the end, high-
level benchmarks Instance for the variety of architectures
requires implementation of algorithmic descriptions.

In parallel with unique application implementations for
high-level benchmarks (benchmark Instance), the SUT
Context should also be released openly to show the nature of
the SUTs respective capabilities, and this Context captures
a historical snapshot of the capability of the SUT. Earlier,
we described the SUT Context as the details about the
architecture. In an ideal benchmark, we take this a step further
by requiring researchers to release two additional sets of
results for applicable micro-benchmarks and design patterns.

B. Micro-benchmarks for SUT Context

Micro-benchmarks are simple designs that show measure-
ments that exercise various pieces of the SUT (SHOC [10]
calls these “level 0” benchmarks). For example, a micro-
benchmark for multiplying 32-bit integers and fixed-point
gives us a base understanding of an FPGAs speed, power,
and area costs (resource usage) of the reconfigurable archi-
tecture. Similarly, communication costs for transferring data
to and from the host (for example, the host PC) and between
nodes (for example, within a cluster of FPGAs) on various
communication protocols, accounting for vendor or benchmark
created IP, allows an understanding of bottlenecks on the target
platform. Micro-benchmarking for SUT Context, therefore,
would include a large list of tests, and researchers would
supply measurements from a subset of this list that apply to
the high-level benchmarks used in their comparisons.

C. Parallel Design Patterns for more SUT Context

Design patterns [51], and more importantly, parallel design
patterns [52] are benchmarks that are not applications, but
rather are common, reoccurring elements of a design. In
SHOC [10] benchmark these are called “level 1" benchmarks;
we might also compare patterns to kernels (part of benchmarks
such as Valar [6] call these “algorithmic patterns”). The list
of design patterns will need to be created by the commu-
nity and, similar to the micro-benchmarks, researchers will
release measurements on those design patterns relevant to the
Context of the SUT and the high-level benchmarks used in
the comparison.

A side-benefit of the identification of parallel design patterns
is that it will help compiler and synthesis tool designers
since they can test their tools on these patterns to verify and
communicate how their tools identify and map these design
structures efficiently. This may also lead to different Designs
for different SUTs, which, in turn, will help researchers
understand how to structure their implementations to be most
efficiently implemented for a particular SUT.

D. Using the benchmark Instance to allow comparison

The SUT Context describes the system architecture and
includes measurements of both micro-benchmarks and parallel
design patterns that relate to the high-level benchmarks that
will be used to compare the systems. Still, if we want to
compare Benchmarkyx on SUT4 and SUTpE where the
instances (Instancey and Instancep) are different, then
how can we do this? This scenario typically happens when
researchers build their own version for a SUT and want
to compare with earlier versions by other researchers on a
SUT they don’t have access to. Also, open-source release of
benchmarks is rare (for certain classes of SUTs) and past
implementations tend to disappear into the ether.

Benchmarks that supply specific code written in a common
language and compiled for SUTs avoid this problem since
the Instance in each case is consistent. Therefore a simple
comparison of measurements shows the differences in the
SUTs. In a more ambitious research agenda, we are interested



in our systems scaling and in employing all optimizations to
algorithmic design, improvement in the quality of tools for the
SUT, and improvements in the SUT. This means the Instance,
as described above, is different and the SUTs are different.

To allow for ideal comparison in this case we need to
capture each Instance numerically as |Instance|, which we
will call the quanta of the Instance. For example, an m-
by-n matrix multiplied by an n-by-o matrix would have a
quanta of m *x n * o. This assumes that we are comparing
two different SUTs with different Instance, where the type
of multiplication and bit-width used are the same. If they
are different, then these qualities need to be captured in
the quanta calculation. For example, quanta might equal
mxnxo+xmult —bit —width for differing multiplication sizes.
Using quanta and ideal measurements of time 7°, energy F,
and cost C can be divided by quanta to give a per quantum
value. For example, T' (in seconds) divided by quanta results
in a seconds per quantum value.

With per-quantum values, we can compare the SUTSs based
on these values to show the quality of the systems independent
of design details, tools, and the technologies and architecture
of the system. These values, together with open designs and
the Context of the system, allow for detailed comparisons
allowing us to better show improvements.

One note, however, is the importance of agreement on
how to calculate the quanta of a benchmark Instance.
Researchers need to consider this and document their process
so other researchers can fairly compare results. The quanta
calculation is not trivial either. Consider the challenges in
simulation where there can be objects (varied in number
and type), space for the objects (dimensions and scales), a
time-scale, and time-steps (or event-driven) of simulation; the
quanta calculations must be thought out carefully.

V. DISCUSSION OF IDEAL BENCHMARKING FOR
HETEROGENEOUS HPC

Ideal benchmarking for HPC needs to be a community
pursuit. As our brief survey of benchmarks (table I) shows,
there are many benchmarks in a number of domains, and
a constant effort is being made to create new benchmarks.
Still, a number of researchers implement their own applica-
tions (mostly without releasing their design details) to try
and demonstrate how their ideas improve the state of our
technologies. In this discussion, we describe some of the
challenges we face, and we attempt to make a case why a
community effort is needed.

For the ideal benchmarking methodology we propose above,
two particular challenges are creating appropriately complex
designs and providing the micro and parallel design pattern
benchmarks. Our computation technologies are continuously
improving, and with this comes an ever-increasing set of
capabilities; in particular, our technologies can handle larger
and larger problems. Benchmark suites tend to be updated
because they just don’t measure the capabilities of what
emerging computing machines can handle. This challenge,
however, is easier solved by using high-level benchmarks that

are descriptions so that researchers need to implement the
Instance. Similarly, as the capabilities of SUTs improves, the
set of micro and parallel design pattern benchmarks will need
to be updated constantly. In other words, a fixed benchmark
can only capture a single point in time for a SUT of that
time, and adopting a community based /iving benchmark will
address these challenges.

In relation to the two above challenges, we cannot under-
emphasize the importance of Tenet 1 of ideal benchmarking
— openness. This practice of releasing our applications should
be the modus operandi for all of our research. This allows the
science and engineering to be independently verified. These
open practices are emerging in granting agencies such as the
National Science Foundation where the data dissemination
plan is part of the granting process. Open Science (maybe
we need Open Engineering?) is a movement that should be
adopted in benchmarking as well as our research [53].

Finally, one of the hardest challenges for benchmarking
SUTs is finding the appropriate metric. An interesting analogy
is that of horse power and cars. An engine can be measured
in term of equivalent horses (horsepower), but in most cases
what really matters is how quickly a car can get from point
A to point B, and how much energy this costs. Similarly,
in computing, max frequencies, floating point operations per
second (FLOPs), and Million instructions per second (MIPs)
are all interesting metrics more useful for analyzing the SUT,
but a measure of time taken to execute a task, is ideal.
We understand measurement is difficult, but per quantum
measurements as described above will provide meaningful
values that can be easily compared.

VI. CONCLUSION AND FUTURE WORK

This report looks at existing benchmarks and provides a set
of tenets and ideas that should be adopted in a community
effort to push our collective research forward. We describe
details of how we believe ideal benchmarking and comparison
should be done, but the reality is that this work requires a
community effort. The question is who will do this and why
would anyone do this? One possibility is to create a commu-
nity benchmarking space where contributors to these efforts
would be included as authors on a year-to-year paper called
“State of the HPC Benchmark”, which would be published
in a leading conference or journal publication. Regardless, the
sooner we make these efforts, the sooner our field will benefit.
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