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Abstract— In this work, we explore how a mechanism for

recording ancestry helps avoid inbreeding and, ultimately,

convergence for persistent optimization problems. We focus

our experimentation on the traveling salesman problem and

introduce a tabu search “like” mechanism in a CHC algorithm

and preselection genetic algorithm. We then compare how

this mechanism improves the diversity within the solution

population. We compare this mechanism to a basic genetic

algorithm and show how the quality of results is improved

and convergence is delayed. Our results indicate that the

CHC algorithm with the inbreeding avoidance mechanism is

the current best implementation for persistent optimization

problems in maintaining diversity of solutions and to find

the best solutions. Preselection shows improvement with our

mechanism, but does not seem to have sufficient exploitation

to find quality results. Our overall goal is to find the best way

to maintain diversity while finding good solutions for single-

threaded genetic algorithms.

1. Introduction

There is a small subset of optimization problems that we call

persistent optimization problems (POPs), and these problems

are characterized by problems that can have their solution

space continuously searched for better solutions. One of the

most recent of these types of problems is persistent computer

aided design (CAD) for Field-Programmable Gate Arrays

(FPGAs). FPGAs are programmable chips that can be updated

in the field with new and better designs. The placement

stage of FPGA CAD, which tries to pack hardware structures

that are connected to one another, can be algorithmically

solved using genetic algorithms (GAs), and researchers have

explored persistently searching for better placement solutions

(improving power consumption) using a GA [1], [2]. Other

examples of where persistent optimization algorithms may be

useful include energy control and distribution, financials, and

data mining. In each of these domains, the solution space is

dynamically changing over time, and better optimizations for

the problems may result in saved money and higher efficiency.

The key question for POPs is whether the additional run-time

costs justifies the benefit of potential improved solutions and

the incremental cost savings.

POPs fit well into GA frameworks since GAs can be

manipulated in terms of exploration versus exploitation phases

to continually cross a solution space. Still, convergence [3]

[4] defined as the lack of diversity in a population such that

new offspring are not sufficiently diverse, therefore, resulting

in suboptimal solutions, is a major concern for POPs in

addition to all GAs. For problems such as the FPGA placement

problem [5] and the Traveling Salesman Problem (TSP), where

a genome is expressed as unique string of individual genomes,

traditional algorithms such as CHC [6], which are built to

preserve diversity, are not directly applicable to these problems

since the hamming distance measure of familiarity does not

apply.

In this work, we implement versions of CHC and prese-

lection GAs to solve the TSP, and we include an inbreeding

avoidance technique inspired by Tabu Search [7]. Our goal is

to develop a single threaded GA that avoids convergence for

the longest period possible while still generating good results.

With the improvements of these algorithms, we plan to further

investigate divergence techniques such as the island model [8]

to build a larger system for POPs using GAs.

Our results show that our inbreeding avoidance mechanism

does achieve higher diversity for both preselection GAs and

the CHC algorithm based on a greater number of generations

before the the problem stabilizes. Preselection algorithms with

inbreeding avoidance last the most number of generations,

but it seems that this crowding technique loses some of the

advantages of competition/exploitation that the CHC algorithm

achieves.

The remainder of this paper is organized as follows. Sec-

tion 2 describes various techniques to maintain diverse popu-

lations for GAs and the relevance of crossbreeding operator to

our problems. Section 2.2 describes our inbreeding avoidance

technique and the two algorithms that they are implemented

within. Section 4 describes our experimental setup and Sec-

tion 5 shows our results. Finally, Section 6 concludes this

work.

2. Background

In this section, we examine various approaches to avoiding

premature convergence and the crossover operator for ordered

chromosomes.

2.1 Approaches to Avoiding Premature Conver-

gence

Premature convergence is a well known problem with GAs

[3] [4]. This problem has been addressed using a number of

methods including basic approaches such as:

1) Increasing population size



2) Island models/ Niching [8]

3) Crowding [9]

4) Preselection [10]

5) Inbreeding prevention [6], [11]

The first approach, increasing population size, impacts

memory usage and algorithmic run-time, but this approach can

be used in combination with all the other approaches to the

premature convergence problem. The second approach, Island

models, divides the search into a number of parallel solutions

where each is run independently of one another. In this way,

there is no sharing of genetic material of individuals from one

island population to another. This approach can also be applied

to any other approach for improving diversity. Therefore, the

first two approaches can be used to improve our results and

will be considered, in a larger system, once we wish to build

a larger system to solve POPs, but our focus for this work

is single-threaded approaches at fixed population size that

maintain genetic diversity while finding good solutions.

The last three schemes in the list are some examples of

algorithmic approaches to the premature convergence prob-

lem. Crowding works by having offspring compete against

individuals in the population that are most similar and thus

maintaining niche lineages within the populations. Similar in-

dividuals are found by making a comparison of their genomic

strings, and this comparison comes at a computation cost.

Preselection is a similar approach to crowding, but to avoid the

computational cost an assumption is made; the assumption is

that a parent will be a similar individual, and therefore parent

and child will compete against each other. Finally, the CHC

algorithm takes a number of steps towards avoiding premature

convergence, and of main interest to this work, parents of

similar genome structure are not bred together (inbreeding

prevention). These three approaches have been extensively

studied for problems that have a binary encoded genome,

and this work looks at two of these approaches for genomes

that have unique chromosome encoding (described in the next

section).

As mentioned before, the CHC algorithm is a non-traditional

GA that was created to avoid premature convergence. In this

paper, we implement the CHC algorithm [6] as one of the

comparison points for our inbreeding avoidance technique.

The CHC algorithm has four main components:

1) Parents and children combined together in competition

for next population

2) Inbreeding avoidance by comparing binary encoded

genomes hamming distance

3) Highly disruptive crossover operator

4) Full restart (from the best individual) once no new

offspring are created in a generation

Since our work is focused on genomes that are not a simple

binary encoded string, we take a modified approach to this

algorithm. In particular, we use a crossover method described

in the next sub section and our inbreeding avoidance technique

is described in the section following the background.

2.2 Crossover Operators for Permutation Based

Genomes

Fig. 1

SAMPLE OF A SMALL PLACEMENT GENOME

In the case of both the TSP and the FPGA placement

problem (among other problems) the genome consists of a

permutation in which each chromosome is unique. These types

of chromosomes are called ordered chromosomes. In the TSP

problem, this genomic string represents the order of a tour;

for example, for a four city problem we might see the string

A, C, B, D which means this solution will go from city A

to C, C to B, and B to D in that order. For the placement

problem this permutation string indicates which pieces of a

circuit are located in a 2D plane. For the previous example,

piece A would be placed at x=0, y=0, piece C is at x=0, y=1,

piece B is at x=1, y=0, and piece D is at x=1, y=1. Figure

1 shows this example of the 2D placement and the respective

genome. This genome structure was originally proposed by

Venkatraman et. al. [12].

For these types of strings, crossover operators that simply

copy the genome of parent 1 and take parts of the genome from

parent 2 and map them into the child cannot be used. Instead,

careful consideration must be used to perform the crossover.

A number of crossover operators of this nature have been

proposed and studied ([4], [13], [14], [15], [16], [17], [18],

[19]). Cicirello et. al. [18] provide a useful classification of

these crossover methods by first classifying them as problem

dependent or general crossover operators. Cicirello et. al.

further classify crossovers into three categories (a) position-

based crossover (e.g. [16]), (b) order-based crossover (e.g.

[19]), and (c) hybrid crossover operators (e.g. [15]).



Recently, the success of a problem dependent crossover

operator proposed b Whitley et. al. for the TSP suggests that

careful thought should be given to a problem with ordered

chromosomes. The same is, likely, true for the FPGA place-

ment problem among other problems, and this is an are for

future work if we pursue FPGA placement POPs.

Fig. 2

SAMPLE PMX MUTATION

For this work, we are attempting to find a general single-

threaded framework for solving POPs that do not use any of

the more modern domain specific solutions that would target

the TSP. Instead, we use the partially mapped crossover (PMX)

[15], which randomly selects a set of parent genes to be copied

to the new child from parent 1. Then, the remaining genes are

transferred from parent 2 unless this gene has already been

assigned by parent 1. If it has, a reverse mapping using the the

information in parent 1 is used to find an appropriate gene to

be copied to the empty spot. Figure 2 shows a simple example

of the PMX operator where a set of chromosomes have been

selected to be copied from parent 1 to child 1 and parent

2 to child 2. The remaining genes are copied over from the

opposite parent using a remapping process when needed. Note

how, in the figure, child 2 has some chromosomes from parent

1 (illustrated in red), some from parent 2 (illustrated in green),

and one remapped chromosome (illustrated in black) . Note

that the highly disruptive aspect of the CHC algorithm is not

specifically explored in this work, and we simply assume that

our crossover operator is sufficient, and we leave this issue as

future work, if necessary.

3. Inbreeding Prevention for Permutation

Based Genomes
In Eshelman’s [6] original work on the CHC algorithm,

he introduced inbreeding prevention for binary encoded chro-

mosomes, and in this work we look at a technique to avoid

inbreeding for ordered chromosomes and apply this technique

both to preselection GAs and our implementation of the CHC

algorithm. Our technique is inspired by tabu search [7] where a

simple history is kept for previous solutions. In the same way,

we can keep ancestry records for each individual by keeping

am ancestor tree to a certain depth of generations.

Figure 3 shows how two parents ancestral trees that contain

three past generations are combined together in a respective

Fig. 3

SHOWS HOW TWO PARENTS ANCESTRY IS RECOMBINED FOR A CHILD

child. Based on our crossbreeding operator, we can assume

that both parents contribute roughly 50% of their genetic in-

formation to the child. Similarly, grandparents will contribute

25% of their genetic material to the child, and so on for

older generations where 4th generation contributes 12.5%, 5th

generation contributes 6.25%, and 6th generation contributes

3.125%. Therefore, from a perspective of our inbreeding

avoidance it doesn’t make much more sense to record deeper

than 6 generations, where 6 generations costs us only 128 data

locations in memory. This memory cost for ancestry records is

small for each member of the population in comparison with

the size of their genomic information. Therefore, the memory

cost is not significant. We will explore the depth of ancestry

in the experimental section.

With the ancestors recorded, avoiding inbreeding is done by

comparing two candidate parents and checking if they share

any common ancestors. If they do share common ancestors,

depending on the GA, a new suitable pair of parents is

found or the crossbreeding operation is skipped. In terms

of the computation cost to search for shared ancestry, we

simply do an exhaustive search of both family trees. We have

implemented these trees as arrays, and therefore, the search is

very simple. The cost for this comparison is similar to that of

calculating the hamming distance between individual genomic

strings.

Our inbreeding avoidance mechanism, however, differs from

the original approaches in CHC and crowding GAs where

the goal is to compare individuals based on how similar they

are to one another. Instead, our inbreeding mechanism makes

a similar assumption to preselection GAs, where children

sharing ancestry will be similar just based on lineage. The

problem in implementing a comparison of individuals with

ordered chromosomes, like that of the original CHC and

crowding GA, is identifying similar solutions, which will

lead to implementations of subgraph isomorphism problems

[20]. For example, a tour in the TSP might include the sub-

string ”A, R, C”, and other population solutions with the sub-

string ”A, R, C” at some point might be considered similar.

Searching for all such string matches would be expensive.



Fig. 4

SHOWS FOUR EXAMPLES OF WHAT MIGHT BE CONSIDERED SIMILAR

PLACEMENTS

In the case of the 2D placement problem the problem

of finding similar individuals is even harder than finding

subgraphs. Figure 4 shows four examples of how 4 things

(from a set of, potentially, thousands) can be placed relative

close to each other, and in each case we might consider

examples (a), (b), (c), and (d) similar to one another since

the components are only one hop away from one another.

These four components, however, will not be adjacent to one

another in the genomic string. For example, example (a) would

have a genome of the form “..., B, D, ..., C, A, ...” and

(b) would have the form “..., A, D, ..., C, B, ...” meaning

sub-string matching approaches cannot be used. Our proposed

mechanism, however, can deal with both problems by trading

off the measure of similarity for the simplicity of comparing

ancestry.

It may also be possible to implement comparison of indi-

viduals using some sort of clustering technique, but again, the

computational complexity of these approaches is high.

In the original implementation of the CHC algorithm, as

the population becomes more and more similar the algorithm

relaxes the similarity comparison. This relaxation, eventually,

activates a restart condition for the algorithm. Using our

ancestry mechanism we implement a similar mechanism in our

implementation of the algorithm for ordered chromosomes. In

our case, relaxation is implemented by changing the depth of

generations explored for similar ancestors. Once the number

of generations drops below one (which just compares parents)

we activate the same restart mechanism as CHC where the

best individual is mutated to create a new restarted population.

During this restart, we eliminate all ancestry information and

completely start over.

4. Experimental Setup
With our inbreeding avoidance technique, our goal is to de-

lay convergence using a single-threaded algorithm for as long

as possible while generating good solutions to the problem.

In the case of POPs, run-time is not, necessarily, the most

important concern, and instead, the number of generations

before convergence occurs is what we are hoping to extend

in this work. To study if our inbreeding mechanism achieves

this we will compare a GA and a preselection based GA to

an implementation of the CHC algorithm and a preselection

based GA with inbreeding prevention. Our comparison will

be based on how many generations each of the algorithms

generates before the best solution exists for 500 new gener-

ations. Additionally, we will experiment with the number of

generations of ancestors to be recorded to see how this impacts

the results.

Before showing data from the results of these experiments,

we will describe some of the details for our TSP and each of

the candidate GAs.

4.1 TSP instance

Instead of using a particular benchmark such as TSPLIB

[21] we build our benchmarks with randomly created cities and

the distances are based on Euclidean distance measurements.

The reason for this approach is our need for large problems

with a high number of nodes to look at POPs where the

likelihood of finding a global optimum is unlikely. For each

experiment we use the same benchmark to fairly compare each

of the algorithmic approaches.

4.2 Common Algorithmic Parameters

To keep our experiments fair, there are a few parameters

and operations that are common for all of the GAs in this

work. Population size for all of the algorithms is set to

500 individuals per generation. The crossover operator is as

described in section 2 and is the PMX based crossover. The

mutation operator is a random swap between two locations in

the genomic string and this value is set 5% of the number

of cities in the TSP. The initial population for each of the

algorithms is generated randomly.

4.3 Base GA

The base GA consists of previously described parameters

and operators with the following additional aspects. The GA

creates each new generation with approximately 20% of the

population from crossbreeding, 79% from crossbreeding and

mutations, and 1% random new individuals. Crossbreeding

and mutations are taken from the best 25% of individuals in

the previous population, and no parents are kept from one

generation to the next. References to this algorithm will use

the name “base ga”.

4.4 Preselection GA

Our implementation of the preselection GA has all the pre-

viously described common parameters. The crowding aspect

of this algorithm is implemented based on the assumption



that children of parents are the most similar (without doing

a formal comparison), and therefore, parents will compete

directly with their children for the next generation. In our

implementation, two parents are selected and the crossover

operation is implemented. The two resulting children are then

mutated and are grouped with the parents, and the best two

individuals are propagated to the next generation.

In the case where inbreeding prevention is part of this

algorithm, parents are only selected when they share no

ancestry. If they do share ancestry then a new pairing is found

by keeping one of the candidate parents and randomly finding

a new second candidate parent. There may be a concern that

depending on the depth of ancestry there will be no suitable

pairing, but given the population size and depth of ancestors

to be recorded, this does not occur for our implementation.

However, algorithm designers should consider this when im-

plementing a similar mechanism for their own problems.

References to these two algorithms will be “preselect ga”

and “preselect no inbreeding ga” where the later has the

mechanism to prevent inbreeding.

4.5 CHC algorithm

Our implementation of the CHC algorithm is derived from

the original publication by Eschelman and a brief description is

included for each of the 4 main concepts within his algorithm.

1) Parents and children combined together in competition

for next population - This is implemented by ranking

both children and parents together and then destroying

the lower half of these individuals. In the case of a tie,

the parent individuals are chosen first.

2) Inbreeding avoidance - this mechanism was described

in the previous section, and when the population of

individual remains the same from one generation to the

next then the depth of ancestry search is reduced by one.

3) Highly disruptive crossover operator - as described in

the background we make the assumption that the PMX

crossover, where approximately 50% of the genetic ma-

terial comes from each of the two parents, is sufficiently

disruptive.

4) Full restart (from the best individual) once no new

offspring are created in a generation - once the depth of

search in the inbreeding avoidance mechanism reaches

zero, we take the best individual and copy and mutate

(with a 35% chromosome mutation rate) to create a

new population. The algorithm then resumes normal

operation.

References to this algorithm will be “chc algorithm”.

5. Experimental Results
In this section, we will look at two experiments. First, what

happens to chc algorithm as we change the number of past

generations to record. These results will show us if there is any

clear advantage to having a deeper record of ancestry. Next,

we will look at how all three algorithms compare to each other

observing how our mechanism improves the perseverance of

diversity.

5.1 Impact of Ancestors on Diversity

For this experiment, we vary the depth of the ancestry tree

between 3 and 8 generations for the chc algorithm. In this

experiment, the depth of ancestry search is controlled by the

algorithm as described earlier in section 4.5. Each instantiation

of the algorithms are executed until 500 iterations of the

algorithm provide no improvement on the cost function and

the run exits.
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Fig. 5

SHOWS THE RESULTS FOR CHC WITH DIFFERENT ANCESTRY DEPTHS

Figure 5 shows a graph of our CHC implementation for the

different ancestry depths. The y-axis shows the cost function

measure for a TSP consisting of 2000 cities. The x-axis

is the number of generations, where the last generation is

reported before the 500 repetitions of no improvement. A

legend is provided and the number for each corresponds to

the maximum depth of ancestry to be recorded. Note that for

each instance of the algorithm the random starting population

is the same (chc-3, chc-4, chc-5, and chc-6 all have the same

initial population).

From this example, we can see that as the ancestry depth

is increased, the number of generations tends to increase.

This tendency, however, is not the case for the 3 ancestor

generation run labeled as chc-3. Also, the instance chc-3 finds

one of the best solutions to the problem. This type of result

is possible based on the randomness of the algorithm, and the

more general result that diversity is maintained based on the

trend that increasing the depth of generations recorded tends

to increase the number of generations before the run exits.

To get a more thorough picture of what is happening,

Figure 6 shows more runs of the CHC algorithm with inbreed-

ing avoidance mechanism and a maximum ancestral depth

of eight. For each of the five runs, we have colored the

respective ancestry depth runs with the same coloring. The

lower number of generations (3, 4, 5) are in dark colors, and

the higher number of generations are in the lighter colors. The

graph clearly shows that there is randomness for each run as

expected. In terms of trends, the higher number of generation
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SHOWS THE RESULTS FOR CHC WITH DIFFERENT ANCESTRY DEPTHS FOR 5 INSTANCES

based algorithms find a path to the low-energy solution later.

The best solutions are found by execution runs by chc-5, chc-

4, chc-6, and chc-7 in that order. We conclude that the depth

range between 5 through 7 seems to be the best choice for

ancestry records based on the results and the intuition that

algorithms maintaining generations past 6 are unnecessarily

restricting mating for unlike individuals.

One other thing we have observed in our CHC algorithm

experiments is the lack of effectiveness for the restart mech-

anism. Only in 2 of the 30 runs of the algorithm was the

restart effective in finding better solutions, noting that all 30

instances do initiate the restart mechanism. We hypothesize

that random mutations for ordered chromosomes at low energy

solution spaces is not effective, and other mechanisms need to

be employed. We leave this to future work.

5.2 Comparison of All Algorithms

In this experiment, we compare all our implementations.

Our comparison points include those algorithms with an

inbreeding avoidance mechanism including the preselection

algorithm with an ancestor depth of 6 previous generations.

The exit condition is the same as previously described, and

our overall goal is to maintain diversity as long as possible

while finding good solutions.

Figure 7 shows a graph of our algorithmic implementations

with a selection of CHC runs from the previous experiment.

Similar to the previous graphs, the y-axis shows the cost

function measure for a TSP consisting of 2000 cities, and the

x-axis shows the number of generations, where the last gen-

eration is reported before the 500 repetitions of no improve-

ment. The legend shows the name for each of the algorithm

implementations with the numbering showing an algorithm

with inbreeding prevention according to the depth of ancestors

recorded. Note that the preselect no inbreeding ga algorithm

uses a depth of 6 ancestral generations to be recorded and

when a pair of parents are selected, all ancestors are searched

for common relations.

From the graph, we see a number of trends. First, pres-

election GAs maintain diversity for the greatest number of

generations. This is to be expected since the crowding nature

of this algorithm maintains highly diverse pockets of evolution.

The best results generated by the preselection GAs, however,

are not as good as the CHC algorithm. This is partially

due to the pockets of evolution, which maintains diversity

at a cost of less competition. The addition of the inbreeding

avoidance mechanism in the preselection algorithm improves

the quality of the solution and extends the diversity (number of

generations), but not by a significant amount. For our purposes,

the small crowding pockets do not seem to allow sufficient

exploitation to find good solutions.

Overall, the best solutions are found by the more diverse

algorithms that do not allow inbreeding based on the mech-

anism we have introduced. From our experimental data, this

suggests that our inbreeding avoidance technique is provid-

ing the desired outcome, and overall, we observe significant

improvement on diversity and quality for all the algorithms

compared to our base ga.

6. Conclusion

In this work, we introduced the concept of POPs and

how GAs can play a valuable roll in solving these types

of problems. We then explored how to maintain genetic

diversity within a single-threaded GA run targeting POPs. We

introduced an inbreeding avoidance technique inspired by tabu

search, and we described how such a mechanism can be used

both with the CHC algorithm and preselection algorithm for

genomic strings that have ordered chromosomes. These types

of chromosomes can be used to solve problems such as TSP

and the FPGA placement problem.
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SHOWS THE RESULTS ALL OUR THE IMPLEMENTATIONS.

The experiments with our inbreeding avoidance mechanism

shows that the more levels of recording for generations im-

proves the diversity of the population, and tends to improve

the quality of results generated by the GAs. We believe that

these types of mechanisms are not only valuable for POPs,

but this could be exploited by other GAs for other types of

problems.
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