Using Simple Ancestry to Deter Inbreeding for Persistent Genetic
Algorithm Search

Aditya Wibowo and Peter Jamieson
Dept. of Electrical and Computer Engineering
Miami University

Abstract—In this work, we explore how a mechanism for
recording ancestry helps avoid inbreeding and, ultimately,
convergence for persistent optimization problems. We focus
our experimentation on the traveling salesman problem and
introduce a tabu search “like” mechanism in a CHC algorithm
and preselection genetic algorithm. We then compare how
this mechanism improves the diversity within the solution
population. We compare this mechanism to a basic genetic
algorithm and show how the quality of results is improved
and convergence is delayed. Our results indicate that the
CHC algorithm with the inbreeding avoidance mechanism is
the current best implementation for persistent optimization
problems in maintaining diversity of solutions and to find
the best solutions. Preselection shows improvement with our
mechanism, but does not seem to have sufficient exploitation
to find quality results. Our overall goal is to find the best way
to maintain diversity while finding good solutions for single-
threaded genetic algorithms.

1. Introduction

There is a small subset of optimization problems that we call
persistent optimization problems (POPs), and these problems
are characterized by problems that can have their solution
space continuously searched for better solutions. One of the
most recent of these types of problems is persistent computer
aided design (CAD) for Field-Programmable Gate Arrays
(FPGAs). FPGAs are programmable chips that can be updated
in the field with new and better designs. The placement
stage of FPGA CAD, which tries to pack hardware structures
that are connected to one another, can be algorithmically
solved using genetic algorithms (GAs), and researchers have
explored persistently searching for better placement solutions
(improving power consumption) using a GA [1], [2]. Other
examples of where persistent optimization algorithms may be
useful include energy control and distribution, financials, and
data mining. In each of these domains, the solution space is
dynamically changing over time, and better optimizations for
the problems may result in saved money and higher efficiency.
The key question for POPs is whether the additional run-time
costs justifies the benefit of potential improved solutions and
the incremental cost savings.

POPs fit well into GA frameworks since GAs can be
manipulated in terms of exploration versus exploitation phases
to continually cross a solution space. Still, convergence [3]
[4] defined as the lack of diversity in a population such that

new offspring are not sufficiently diverse, therefore, resulting
in suboptimal solutions, is a major concern for POPs in
addition to all GAs. For problems such as the FPGA placement
problem [5] and the Traveling Salesman Problem (TSP), where
a genome is expressed as unique string of individual genomes,
traditional algorithms such as CHC [6], which are built to
preserve diversity, are not directly applicable to these problems
since the hamming distance measure of familiarity does not
apply.

In this work, we implement versions of CHC and prese-
lection GAs to solve the TSP, and we include an inbreeding
avoidance technique inspired by Tabu Search [7]. Our goal is
to develop a single threaded GA that avoids convergence for
the longest period possible while still generating good results.
With the improvements of these algorithms, we plan to further
investigate divergence techniques such as the island model [8]
to build a larger system for POPs using GAs.

Our results show that our inbreeding avoidance mechanism
does achieve higher diversity for both preselection GAs and
the CHC algorithm based on a greater number of generations
before the the problem stabilizes. Preselection algorithms with
inbreeding avoidance last the most number of generations,
but it seems that this crowding technique loses some of the
advantages of competition/exploitation that the CHC algorithm
achieves.

The remainder of this paper is organized as follows. Sec-
tion 2 describes various techniques to maintain diverse popu-
lations for GAs and the relevance of crossbreeding operator to
our problems. Section 2.2 describes our inbreeding avoidance
technique and the two algorithms that they are implemented
within. Section 4 describes our experimental setup and Sec-
tion 5 shows our results. Finally, Section 6 concludes this
work.

2. Background

In this section, we examine various approaches to avoiding
premature convergence and the crossover operator for ordered
chromosomes.

2.1 Approaches to Avoiding Premature Conver-
gence

Premature convergence is a well known problem with GAs
[3] [4]. This problem has been addressed using a number of
methods including basic approaches such as:

1) Increasing population size

2) Island models/ Niching [8]

3) Crowding [9]

4) Preselection [10]

5) Inbreeding prevention [6], [11]

The first approach, increasing population size, impacts
memory usage and algorithmic run-time, but this approach can
be used in combination with all the other approaches to the
premature convergence problem. The second approach, Island
models, divides the search into a number of parallel solutions
where each is run independently of one another. In this way,
there is no sharing of genetic material of individuals from one
island population to another. This approach can also be applied
to any other approach for improving diversity. Therefore, the
first two approaches can be used to improve our results and
will be considered, in a larger system, once we wish to build
a larger system to solve POPs, but our focus for this work
is single-threaded approaches at fixed population size that
maintain genetic diversity while finding good solutions.

The last three schemes in the list are some examples of
algorithmic approaches to the premature convergence prob-
lem. Crowding works by having offspring compete against
individuals in the population that are most similar and thus
maintaining niche lineages within the populations. Similar in-
dividuals are found by making a comparison of their genomic
strings, and this comparison comes at a computation cost.
Preselection is a similar approach to crowding, but to avoid the
computational cost an assumption is made; the assumption is
that a parent will be a similar individual, and therefore parent
and child will compete against each other. Finally, the CHC
algorithm takes a number of steps towards avoiding premature
convergence, and of main interest to this work, parents of
similar genome structure are not bred together (inbreeding
prevention). These three approaches have been extensively
studied for problems that have a binary encoded genome,
and this work looks at two of these approaches for genomes
that have unique chromosome encoding (described in the next
section).

As mentioned before, the CHC algorithm is a non-traditional
GA that was created to avoid premature convergence. In this
paper, we implement the CHC algorithm [6] as one of the
comparison points for our inbreeding avoidance technique.
The CHC algorithm has four main components:

1) Parents and children combined together in competition
for next population

2) Inbreeding avoidance by comparing binary encoded
genomes hamming distance

3) Highly disruptive crossover operator

4) Full restart (from the best individual) once no new
offspring are created in a generation

Since our work is focused on genomes that are not a simple
binary encoded string, we take a modified approach to this
algorithm. In particular, we use a crossover method described
in the next sub section and our inbreeding avoidance technique
is described in the section following the background.

2.2 Crossover Operators for Permutation Based
Genomes

Sample Genome

DesignlLogic | A | B | C | D

Location (0,0) 0,1 (1,1)

Fig. 1
SAMPLE OF A SMALL PLACEMENT GENOME

In the case of both the TSP and the FPGA placement
problem (among other problems) the genome consists of a
permutation in which each chromosome is unique. These types
of chromosomes are called ordered chromosomes. In the TSP
problem, this genomic string represents the order of a tour;
for example, for a four city problem we might see the string
A, C, B, D which means this solution will go from city A
to C, C to B, and B to D in that order. For the placement
problem this permutation string indicates which pieces of a
circuit are located in a 2D plane. For the previous example,
piece A would be placed at x=0, y=0, piece C is at x=0, y=1,
piece B is at x=1, y=0, and piece D is at x=1, y=1. Figure
1 shows this example of the 2D placement and the respective
genome. This genome structure was originally proposed by
Venkatraman et. al. [12].

For these types of strings, crossover operators that simply
copy the genome of parent 1 and take parts of the genome from
parent 2 and map them into the child cannot be used. Instead,
careful consideration must be used to perform the crossover.
A number of crossover operators of this nature have been
proposed and studied ([4], [13], [14], [15], [16], [17], [18],
[19]). Cicirello et. al. [18] provide a useful classification of
these crossover methods by first classifying them as problem
dependent or general crossover operators. Cicirello et. al
further classify crossovers into three categories (a) position-
based crossover (e.g. [16]), (b) order-based crossover (e.g.
[19]), and (c) hybrid crossover operators (e.g. [15]).

Recently, the success of a problem dependent crossover
operator proposed b Whitley et. al. for the TSP suggests that
careful thought should be given to a problem with ordered
chromosomes. The same is, likely, true for the FPGA place-
ment problem among other problems, and this is an are for
future work if we pursue FPGA placement POPs.

PARENT1={D, 5, H,A, ¢, F, &, C}

PARENT2={D, |, B,A, C, I, G, H}

CHILD1={D,:,H,A,B,F,G,C}

CHILD2={D,,G,A,C,F, 2, H}
Fig. 2

SAMPLE PMX MUTATION

For this work, we are attempting to find a general single-
threaded framework for solving POPs that do not use any of
the more modern domain specific solutions that would target
the TSP. Instead, we use the partially mapped crossover (PMX)
[15], which randomly selects a set of parent genes to be copied
to the new child from parent 1. Then, the remaining genes are
transferred from parent 2 unless this gene has already been
assigned by parent 1. If it has, a reverse mapping using the the
information in parent 1 is used to find an appropriate gene to
be copied to the empty spot. Figure 2 shows a simple example
of the PMX operator where a set of chromosomes have been
selected to be copied from parent 1 to child 1 and parent
2 to child 2. The remaining genes are copied over from the
opposite parent using a remapping process when needed. Note
how, in the figure, child 2 has some chromosomes from parent
1 (illustrated in red), some from parent 2 (illustrated in green),
and one remapped chromosome (illustrated in black) . Note
that the highly disruptive aspect of the CHC algorithm is not
specifically explored in this work, and we simply assume that
our crossover operator is sufficient, and we leave this issue as
future work, if necessary.

3. Inbreeding Prevention for Permutation

Based Genomes

In Eshelman’s [6] original work on the CHC algorithm,
he introduced inbreeding prevention for binary encoded chro-
mosomes, and in this work we look at a technique to avoid
inbreeding for ordered chromosomes and apply this technique
both to preselection GAs and our implementation of the CHC
algorithm. Our technique is inspired by tabu search [7] where a
simple history is kept for previous solutions. In the same way,
we can keep ancestry records for each individual by keeping
am ancestor tree to a certain depth of generations.

Figure 3 shows how two parents ancestral trees that contain
three past generations are combined together in a respective

parent

P1 P2
GP1 GP2 GP3 GP4
child
GGP GGP GGP GGP GGP GGP GGP GGP
1 2 3 4 5 6 7 8 parent parent
P1 P2 P1 P2
parent
P1 P2 GP1 GP2GP3 GP4 GP1 GP2 GP3 GP4
GP1 GP2 GP3 GP4

GGP GGP GGP GGP GGP GGP GGP GGP
1 2 3 4 5 6 7 8

Fig. 3
SHOWS HOW TWO PARENTS ANCESTRY IS RECOMBINED FOR A CHILD

child. Based on our crossbreeding operator, we can assume
that both parents contribute roughly 50% of their genetic in-
formation to the child. Similarly, grandparents will contribute
25% of their genetic material to the child, and so on for
older generations where 4th generation contributes 12.5%, 5th
generation contributes 6.25%, and 6th generation contributes
3.125%. Therefore, from a perspective of our inbreeding
avoidance it doesn’t make much more sense to record deeper
than 6 generations, where 6 generations costs us only 128 data
locations in memory. This memory cost for ancestry records is
small for each member of the population in comparison with
the size of their genomic information. Therefore, the memory
cost is not significant. We will explore the depth of ancestry
in the experimental section.

With the ancestors recorded, avoiding inbreeding is done by
comparing two candidate parents and checking if they share
any common ancestors. If they do share common ancestors,
depending on the GA, a new suitable pair of parents is
found or the crossbreeding operation is skipped. In terms
of the computation cost to search for shared ancestry, we
simply do an exhaustive search of both family trees. We have
implemented these trees as arrays, and therefore, the search is
very simple. The cost for this comparison is similar to that of
calculating the hamming distance between individual genomic
strings.

Our inbreeding avoidance mechanism, however, differs from
the original approaches in CHC and crowding GAs where
the goal is to compare individuals based on how similar they
are to one another. Instead, our inbreeding mechanism makes
a similar assumption to preselection GAs, where children
sharing ancestry will be similar just based on lineage. The
problem in implementing a comparison of individuals with
ordered chromosomes, like that of the original CHC and
crowding GA, is identifying similar solutions, which will
lead to implementations of subgraph isomorphism problems
[20]. For example, a tour in the TSP might include the sub-
string A, R, C”, and other population solutions with the sub-
string A, R, C” at some point might be considered similar.
Searching for all such string matches would be expensive.

Cl|A C||D
(c) (d)

Fig. 4
SHOWS FOUR EXAMPLES OF WHAT MIGHT BE CONSIDERED SIMILAR
PLACEMENTS

In the case of the 2D placement problem the problem
of finding similar individuals is even harder than finding
subgraphs. Figure 4 shows four examples of how 4 things
(from a set of, potentially, thousands) can be placed relative
close to each other, and in each case we might consider
examples (a), (b), (c), and (d) similar to one another since
the components are only one hop away from one another.
These four components, however, will not be adjacent to one
another in the genomic string. For example, example (a) would
have a genome of the form “.., B, D, ..., C, A, ..” and
(b) would have the form “..., A, D, ..., C, B, ...” meaning
sub-string matching approaches cannot be used. Our proposed
mechanism, however, can deal with both problems by trading
off the measure of similarity for the simplicity of comparing
ancestry.

It may also be possible to implement comparison of indi-
viduals using some sort of clustering technique, but again, the
computational complexity of these approaches is high.

In the original implementation of the CHC algorithm, as
the population becomes more and more similar the algorithm
relaxes the similarity comparison. This relaxation, eventually,
activates a restart condition for the algorithm. Using our
ancestry mechanism we implement a similar mechanism in our
implementation of the algorithm for ordered chromosomes. In
our case, relaxation is implemented by changing the depth of
generations explored for similar ancestors. Once the number
of generations drops below one (which just compares parents)
we activate the same restart mechanism as CHC where the
best individual is mutated to create a new restarted population.
During this restart, we eliminate all ancestry information and
completely start over.

4. Experimental Setup

With our inbreeding avoidance technique, our goal is to de-
lay convergence using a single-threaded algorithm for as long
as possible while generating good solutions to the problem.
In the case of POPs, run-time is not, necessarily, the most
important concern, and instead, the number of generations
before convergence occurs is what we are hoping to extend
in this work. To study if our inbreeding mechanism achieves
this we will compare a GA and a preselection based GA to
an implementation of the CHC algorithm and a preselection
based GA with inbreeding prevention. Our comparison will
be based on how many generations each of the algorithms
generates before the best solution exists for 500 new gener-
ations. Additionally, we will experiment with the number of
generations of ancestors to be recorded to see how this impacts
the results.

Before showing data from the results of these experiments,
we will describe some of the details for our TSP and each of
the candidate GAs.

4.1 TSP instance

Instead of using a particular benchmark such as TSPLIB
[21] we build our benchmarks with randomly created cities and
the distances are based on Euclidean distance measurements.
The reason for this approach is our need for large problems
with a high number of nodes to look at POPs where the
likelihood of finding a global optimum is unlikely. For each
experiment we use the same benchmark to fairly compare each
of the algorithmic approaches.

4.2 Common Algorithmic Parameters

To keep our experiments fair, there are a few parameters
and operations that are common for all of the GAs in this
work. Population size for all of the algorithms is set to
500 individuals per generation. The crossover operator is as
described in section 2 and is the PMX based crossover. The
mutation operator is a random swap between two locations in
the genomic string and this value is set 5% of the number
of cities in the TSP. The initial population for each of the
algorithms is generated randomly.

4.3 Base GA

The base GA consists of previously described parameters
and operators with the following additional aspects. The GA
creates each new generation with approximately 20% of the
population from crossbreeding, 79% from crossbreeding and
mutations, and 1% random new individuals. Crossbreeding
and mutations are taken from the best 25% of individuals in
the previous population, and no parents are kept from one
generation to the next. References to this algorithm will use
the name “base_ga’.

4.4 Preselection GA

Our implementation of the preselection GA has all the pre-
viously described common parameters. The crowding aspect
of this algorithm is implemented based on the assumption

that children of parents are the most similar (without doing
a formal comparison), and therefore, parents will compete
directly with their children for the next generation. In our
implementation, two parents are selected and the crossover
operation is implemented. The two resulting children are then
mutated and are grouped with the parents, and the best two
individuals are propagated to the next generation.

In the case where inbreeding prevention is part of this
algorithm, parents are only selected when they share no
ancestry. If they do share ancestry then a new pairing is found
by keeping one of the candidate parents and randomly finding
a new second candidate parent. There may be a concern that
depending on the depth of ancestry there will be no suitable
pairing, but given the population size and depth of ancestors
to be recorded, this does not occur for our implementation.
However, algorithm designers should consider this when im-
plementing a similar mechanism for their own problems.

References to these two algorithms will be “preselect_ga”
and “preselect_no_inbreeding_ga” where the later has the
mechanism to prevent inbreeding.

4.5 CHC algorithm

Our implementation of the CHC algorithm is derived from
the original publication by Eschelman and a brief description is
included for each of the 4 main concepts within his algorithm.

1) Parents and children combined together in competition
for next population - This is implemented by ranking
both children and parents together and then destroying
the lower half of these individuals. In the case of a tie,
the parent individuals are chosen first.

2) Inbreeding avoidance - this mechanism was described
in the previous section, and when the population of
individual remains the same from one generation to the
next then the depth of ancestry search is reduced by one.

3) Highly disruptive crossover operator - as described in
the background we make the assumption that the PMX
crossover, where approximately 50% of the genetic ma-
terial comes from each of the two parents, is sufficiently
disruptive.

4) Full restart (from the best individual) once no new
offspring are created in a generation - once the depth of
search in the inbreeding avoidance mechanism reaches
zero, we take the best individual and copy and mutate
(with a 35% chromosome mutation rate) to create a
new population. The algorithm then resumes normal
operation.

References to this algorithm will be “chc_algorithm”.

5. Experimental Results

In this section, we will look at two experiments. First, what
happens to chc_algorithm as we change the number of past
generations to record. These results will show us if there is any
clear advantage to having a deeper record of ancestry. Next,
we will look at how all three algorithms compare to each other
observing how our mechanism improves the perseverance of
diversity.

5.1 Impact of Ancestors on Diversity

For this experiment, we vary the depth of the ancestry tree
between 3 and 8 generations for the chc_algorithm. In this
experiment, the depth of ancestry search is controlled by the
algorithm as described earlier in section 4.5. Each instantiation
of the algorithms are executed until 500 iterations of the
algorithm provide no improvement on the cost function and
the run exits.

140000 -

Inbreeding Mechanism for CHC

135000 -

130000 -

125000 -

120000 -

115000 -

110000 -

105000 -

100000

1 51 101 151 201 251 301 351 401

Generations

Fig. 5
SHOWS THE RESULTS FOR CHC WITH DIFFERENT ANCESTRY DEPTHS

Figure 5 shows a graph of our CHC implementation for the
different ancestry depths. The y-axis shows the cost function
measure for a TSP consisting of 2000 cities. The x-axis
is the number of generations, where the last generation is
reported before the 500 repetitions of no improvement. A
legend is provided and the number for each corresponds to
the maximum depth of ancestry to be recorded. Note that for
each instance of the algorithm the random starting population
is the same (chc-3, chc-4, che-5, and che-6 all have the same
initial population).

From this example, we can see that as the ancestry depth
is increased, the number of generations tends to increase.
This tendency, however, is not the case for the 3 ancestor
generation run labeled as chc-3. Also, the instance chc-3 finds
one of the best solutions to the problem. This type of result
is possible based on the randomness of the algorithm, and the
more general result that diversity is maintained based on the
trend that increasing the depth of generations recorded tends
to increase the number of generations before the run exits.

To get a more thorough picture of what is happening,
Figure 6 shows more runs of the CHC algorithm with inbreed-
ing avoidance mechanism and a maximum ancestral depth
of eight. For each of the five runs, we have colored the
respective ancestry depth runs with the same coloring. The
lower number of generations (3, 4, 5) are in dark colors, and
the higher number of generations are in the lighter colors. The
graph clearly shows that there is randomness for each run as
expected. In terms of trends, the higher number of generation

140000 -

135000 ¥&5

130000

125000 -

120000

115000 -

110000

105000 -

100000

Inbreeding Mechanism for CHC

1 51 101 151 201 251

Generations

351 401 451 501 551 601 651

Fig. 6
SHOWS THE RESULTS FOR CHC WITH DIFFERENT ANCESTRY DEPTHS FOR 5 INSTANCES

based algorithms find a path to the low-energy solution later.
The best solutions are found by execution runs by chc-5, chc-
4, chc-6, and che-7 in that order. We conclude that the depth
range between 5 through 7 seems to be the best choice for
ancestry records based on the results and the intuition that
algorithms maintaining generations past 6 are unnecessarily
restricting mating for unlike individuals.

One other thing we have observed in our CHC algorithm
experiments is the lack of effectiveness for the restart mech-
anism. Only in 2 of the 30 runs of the algorithm was the
restart effective in finding better solutions, noting that all 30
instances do initiate the restart mechanism. We hypothesize
that random mutations for ordered chromosomes at low energy
solution spaces is not effective, and other mechanisms need to
be employed. We leave this to future work.

5.2 Comparison of All Algorithms

In this experiment, we compare all our implementations.
Our comparison points include those algorithms with an
inbreeding avoidance mechanism including the preselection
algorithm with an ancestor depth of 6 previous generations.
The exit condition is the same as previously described, and
our overall goal is to maintain diversity as long as possible
while finding good solutions.

Figure 7 shows a graph of our algorithmic implementations
with a selection of CHC runs from the previous experiment.
Similar to the previous graphs, the y-axis shows the cost
function measure for a TSP consisting of 2000 cities, and the
x-axis shows the number of generations, where the last gen-
eration is reported before the 500 repetitions of no improve-
ment. The legend shows the name for each of the algorithm
implementations with the numbering showing an algorithm
with inbreeding prevention according to the depth of ancestors
recorded. Note that the preselect_no_inbreeding_ga algorithm
uses a depth of 6 ancestral generations to be recorded and

when a pair of parents are selected, all ancestors are searched
for common relations.

From the graph, we see a number of trends. First, pres-
election GAs maintain diversity for the greatest number of
generations. This is to be expected since the crowding nature
of this algorithm maintains highly diverse pockets of evolution.
The best results generated by the preselection GAs, however,
are not as good as the CHC algorithm. This is partially
due to the pockets of evolution, which maintains diversity
at a cost of less competition. The addition of the inbreeding
avoidance mechanism in the preselection algorithm improves
the quality of the solution and extends the diversity (number of
generations), but not by a significant amount. For our purposes,
the small crowding pockets do not seem to allow sufficient
exploitation to find good solutions.

Overall, the best solutions are found by the more diverse
algorithms that do not allow inbreeding based on the mech-
anism we have introduced. From our experimental data, this
suggests that our inbreeding avoidance technique is provid-
ing the desired outcome, and overall, we observe significant
improvement on diversity and quality for all the algorithms
compared to our base_ga.

6. Conclusion

In this work, we introduced the concept of POPs and
how GAs can play a valuable roll in solving these types
of problems. We then explored how to maintain genetic
diversity within a single-threaded GA run targeting POPs. We
introduced an inbreeding avoidance technique inspired by tabu
search, and we described how such a mechanism can be used
both with the CHC algorithm and preselection algorithm for
genomic strings that have ordered chromosomes. These types
of chromosomes can be used to solve problems such as TSP
and the FPGA placement problem.

140000

Inbreeding Mechanism for CHC

135000
=—base_ga
130000 preselect_ga
=preselect_ga_no_inbreed
125000 - e—chc-4
e chiC-5
120000 - s chiC-6
= chc-3
115000 -
110000 -
105000 -
100000
151 101 151 201 251 301 351 401 451 501 551 601 651 701 751 801 851 901 951
Generations
Fig. 7

SHOWS THE RESULTS ALL OUR THE IMPLEMENTATIONS.

The experiments with our inbreeding avoidance mechanism
shows that the more levels of recording for generations im-
proves the diversity of the population, and tends to improve
the quality of results generated by the GAs. We believe that
these types of mechanisms are not only valuable for POPs,
but this could be exploited by other GAs for other types of
problems.

References

(1]

[2]

[3]

[4]

[5]

[6]

[7

—

[8]

[9]

P. Jamieson, “Exploring inevitable convergence for a genetic algorithm
persistent fpga placer,” in GEM, 2011, pp. 1-8. [Online]. Available:
http://www.users.muohio.edu/jamiespa/html_papers/gem_11.pdf

——, “Persistent cad for in-the-field power optimization,” in ERSA,
2010, pp. 267-270. [Online]. Available: http://www.users.muohio.edu/
jamiespa/html_papers/ersa_10.pdf

M. Rocha and J. Neves, “Preventing premature convergence to local
optima in genetic algorithms via random offspring generation,” in
Proceedings of the 12th international conference on Industrial and
engineering applications of artificial intelligence and expert systems:
multiple approaches to intelligent systems, 1999, pp. 127-136. [Online].
Available: http://portal.acm.org/citation.cfm?id=341506.341546

D. E. Goldberg, Genetic Algorithms in Search, Optimization, and
Machine Learning, 1st ed. Addison-Wesley Professional, January 1989.
[Online]. Available: http://www.amazon.com/exec/obidos/redirect?tag=
citeulike07-20\ &path=ASIN/0201157675

K. Roy and C. Sechen, “A timing driven n-way chip and
multi-chip partitioner,” in Computer-Aided Design, 1993. ICCAD-
93. Digest of Technical Papers., 1993 IEEE/ACM International
Conference on, 1993, pp. 240 -247. [Online]. Available: http:
/Iwww.eecg.toronto.edu/~ jayar/pubs/sankar/fpga99sankar.pdf

L. J. Eshelman, “The chc adaptive search algorithm: How to have
safe search when engaging in nontraditional genetic recombination,” in
FOGA, 1990, pp. 265-283.

F. Glover, “Future paths for integer programming and links to artificial
intelligence,” Comput. Oper. Res., vol. 13, pp. 533-549, May 1986.
[Online]. Available: http://dl.acm.org/citation.cfm?id=15310.15311

R. E. Smith, S. Forrest, and A. S. Perelson, “Searching for
diverse, cooperative populations with genetic algorithms,” Evol.
Comput., vol. 1, pp. 127-149, June 1993. [Online]. Available:
http://dx.doi.org/10.1162/evco.1993.1.2.127

K. A. De Jong, “An analysis of the behavior of a class of genetic adaptive
systems.” Ph.D. dissertation, Ann Arbor, MI, USA, 1975, aAI7609381.

[10]

(1]

[12]

[13]

[14]

[15]

[16]

(17]

[18]

[19]

[20]

[21]

D. J. Cavicchio, “Adaptive Search Using Simulated Evolution,” Ph.D.
dissertation, University of Michigan, 1970.

S. De, S. K. Pal, and A. Ghosh, “Genotypic and phenotypic assortative
mating in genetic algorithm,” Inf. Sci., vol. 105, pp. 209-226, March
1998. [Online]. Available: http://dx.doi.org/10.1016/S0020-0255(97)
10035-4

R. Venkatraman and L. M. Patnaik, “An evolutionary approach to
timing driven fpga placement,” in GLSVLSI ’00: Proceedings of the
10th Great Lakes symposium on VLSI, 2000, pp. 81-85. [Online].
Available: http://doi.acm.org/10.1145/330855.330986

D. Whitley, D. Hains, and A. Howe, “A hybrid genetic algorithm for
the traveling salesman problem using generalized partition crossover,”
in Proceedings of the 11th international conference on Parallel problem
solving from nature: Part I, 2010, pp. 566-575. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1885031.1885092

——, “Tunneling between optima: partition crossover for the traveling
salesman problem,” in Proceedings of the 11th Annual conference on
Genetic and evolutionary computation, 2009, pp. 915-922. [Online].
Available: http://doi.acm.org/10.1145/1569901.1570026

D. E. Goldberg and R. Lingle, Jr., “Alleles, loci, and the traveling
salesman problem,” in Proceedings of the Ist International Conference
on Genetic Algorithms, 1985, pp. 154-159. [Online]. Available:
http://dl.acm.org/citation.cfm?id=645511.657095

I. M. Oliver, D. J. Smith, and J. R. C. Holland, “A study of permutation
crossover operators on the traveling salesman problem,” in Proceedings
of the Second International Conference on Genetic Algorithms on
Genetic algorithms and their application, 1987, pp. 224-230. [Online].
Available: http://dl.acm.org/citation.cfm?id=42512.42542

B. A. Julstrom, “Very greedy crossover in a genetic algorithm for
the traveling salesman problem,” in Proceedings of the 1995 ACM
symposium on Applied computing, 1995, pp. 324-328. [Online].
Available: http://doi.acm.org/10.1145/315891.316009

V. A. Cicirello, “Non-wrapping order crossover: an order preserving
crossover operator that respects absolute position,” in Proceedings of
the 8th annual conference on Genetic and evolutionary computation,
2006, pp. 1125-1132. [Online]. Available: http://doi.acm.org/10.1145/
1143997.1144177

L. Davis, “Applying adaptive algorithms to epistatic domains,” in IJCAI,
1985, pp. 162-164.

H. G. Barrow and R. M. Burstall, “Subgraph isomorphism, matching
relational structures and maximal cliques,” Information Processing Let-
ters, vol. 4, pp. 83-84, 1976.

G. Reinelt, “TSPLIB — a traveling salesman problem library,” ORSA
Journal on Computing, vol. 3, no. 4, pp. 376-384, 1991.

