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Abstract— Persistent CAD algorithms offer the potential
to optimize power consumption for programmable chips
post development and deployment. The basic idea is that
algorithms continue to search for better design solutions
and as better solutions are found, the design is deployed to
programmable chips resulting in better performance. In this
work, we further study a persistent placement algorithm for
FPGAs and investigate a number of algorithm improvements
attempting to delay premature convergence. Our results show
that these techniques create some divergence in the solu-
tions, but in all cases what we call “inevitable convergence
occurs” in the first 2 hours of execution.
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1. Introduction

Field-Programmable Gate Arrays (FPGAs) are pro-
grammable Integrated Chips (ICs) that continue to gain
popularity due to the challenges and costs associated with
creating an Application-Specific Integrated Circuit (ASIC).
One aspect of the FPGA, the programmability, means that
these devices, similar to general purpose processors, can
be reprogrammed. This means that even when the chip is
deployed in the field, with the appropriate functionality, these
devices can be updated with bug fixes, new designs, and
as this work examines, more efficient designs. The last of
these updates is part of what we call persistent Computer
Aided Design (CAD) where optimization algorithms, which
map designs to FPGAs, are run post chip deployment to try
and find more optimal implementations of the design. These
more optimal implementations focus on improving the power
consumption of the FPGA.

We first introduced a persistent genetic algorithm (GA)
for placement on FPGAs in [1]. This work showed how
a genetic algorithm finds improved solutions early and the
rate of these improvements slows as time increases. Our
window of measurement for a relatively small benchmark
was only one hour. In this work, we increase the time
window of observation and use a variety of modifications to
the GA to attempt to maintain diversity in the population and
to delay what we call “inevitable convergence”. Inevitable
convergence, like premature convergence [2] [3], is the lack
of diversity in a population such that new offspring are
not sufficiently diverse, therefore, resulting in suboptimal

solutions. In the case of persistent CAD, convergence is
inevitable and is likely suboptimal. The goal, therefore, is
to identify convergence (or measure population diversity [4],
[5]) as well as avoid convergence. In this work we attempt
techniques to deal with the later and leave the identification
of convergence as future work.

To study inevitable convergence for persistent placement
we implement the following algorithmic variations:

o Parallel algorithmic threads [6]

o A partial mapped crossover breeding operator [3]

o A partial mapped crossover breeding operator with
mutations

Our results show that these techniques all tend to converge
in about 2 hours. In all cases, when compared against the
baseline random solution it is evident that the large gap
between random solutions and these techniques means that
it is highly unlikely that they will ever leave their local
minimums.

The remainder of this paper is organized as follows.
Section 2 briefly describes FPGAs, CAD for FPGAs, and
the persistent FPGA placement problem. Section 3 describes
our implementation of genetic algorithm placer. Section 4
describes our experimental setup and shows results for one
MCNC benchmarks. Finally, Section 5 concludes this work.

2. Background

FPGAs are programmable ICs that can implement any
digital design. These devices consist of programmable logic
blocks and a programmable routing [7] where the pro-
grammable routing consists of wire segments that are con-
nected to either logic blocks or other wire segments via
programmable switches. The logic blocks are also called
clusters (which is the term we will use throughout this
work) where these clusters commonly consist of a combi-
nation of Look-up Tables (LUTs), flip-flops, and internal
programmable routing. The most important aspect of this
architecture for the placement problem is the cluster, and the
placement algorithm maps design clusters onto the FPGA,
which, itself, consists of an array of these clusters.

Our open source CAD flow used by VPR 5.0 [8], which
is an academic FPGA tool that allows us to experimentally
test algorithms and FPGA architectures consists of Odin
IT [9] (high-level synthesis), ABC [10] (logic optimization



and technology mapping) and tv-pack [11] (clustering). First,
a digital design is created in Verilog HDL [12] and used as
the input to this CAD flow, and a series of CAD flow stages
convert the design to a programmable bit-stream that can be
uploaded to the FPGA to implement the digital design.

This work focuses on the FPGA placement step, which
maps the design clusters onto the FPGA. This is the second
last stage and is implemented in VPR 5.0. VPR 5.0, orig-
inally, used simulated annealing (SA) for this placement,
and we have implemented a genetic algorithm within this
software framework.

2.1 Details of FPGA Placement

FPGA placement algorithms try to place the clusters,
representing the digital design, onto the array of FPGA
clusters such that the critical path (the longest path from
either a primary input to a primary output, a primary input to
flip-flop, flip-flop to flip-flop, or flip-flop to primary output)
is minimized, the power consumption of the programmable
routing is minimized, and the overall wire-length of the
mapped circuit is minimized. This problem has been shown
to be NP-complete to solve optimally, and a number of popu-
lar algorithms have been used to solve this problem including
simulated annealing ([13], [7]), which is the algorithm used
in VPR 5.0 [8], min-cut ([14], [15], [16]), analytic ([17],
[18]), and genetic algorithms (GAs) [19], [20], and [21].

We focus on SA and GA algorithms in this work since
our GA is built off the SA in VPR. The SA uses a cooling
schedule to control the acceptance of randomly selected
swaps between clusters on an FPGA. Each swap of clusters
will either improve or degrade the critical path (as well as
other metrics), and initially, all swaps are accepted regardless
if they improve the optimizations metrics or not. As the
temperature cools, only swaps that improve the critical path
are accepted. In this way, the early phases of the cooling
schedule is used to allow hill climbing that will, hopefully,
avoid local minimums in this optimization problem [7].

The two most relevant aspects of the annealer as a
placement algorithm for FPGAs are the scheduling of the
cooling and the cost function. The scheduling of the annealer
determines if a random swap is accepted and determines the
maximum Manhattan distance of the cluster swaps. As the
algorithm continues, swapping of clusters that don’t improve
the cost function are not accepted, and the distance between
the swaps is reduced.

The distance of a random swap of clusters on a X by Y
array is based on the term Rj;n,;:. Given a 5 by 5 FPGA,
Ryimit can have a maximum value of 5 meaning that a
cluster located at the x coordinate 0 and y coordinate O could
be swapped with another cluster located at x coordinate 4
and y coordinate 4. As Ry, is reduced by the annealer’s
scheduler, the distance for a swap is reduced, and this
represents the stabilizing of the placement algorithm (the
cooling and lower excitation of the molecules in a metal).
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Figure 1: Shows how the Ry, factor affects the distance
of swaps

For example, Figure 1 shows a 5 by 5 FPGA where random
swaps could happen for the digital logic at x = 0, y = 1 with
an Ryt = 2 (The candidate cluster to swap is surrounded
by a thick dotted line, and the clusters it can swap with are
shaded in darker grey).

The second aspect of the annealer is the cost function
used estimate the quality of the placement. The cost function
for SA in VPR 5.0 with power [22] consists of three
components defined in [7]. First is the sum of the bounding
box dimensions of all nets which estimates the total amount
of wire needed to implement the circuit (also know as wire-
length). Given N nets, bb, (i) and bb,(i) are the x and y
dimensions of a bounding box for each net (i), and ¢(i) as a
scaling factor for better wire-length estimates, then the first
component of the cost function is defined as:

WiringCost = Z q(7) - [bbg(3) + bby ()] (1)

i=1
The second component of the cost function evaluates the
timing cost of a placement where,

(CE)

TimingCost = Z Delay(i, j)-Criticality(i, j)

Vi,jEcircuit
2
where CE is a constant, Delay(i,j) is the delay of the
connection from source i to sink j, and Criticality(i,j) is a
measure of how close the given i, j path is to the global
critical path. The power component is defined as:

N
PowerCost = Z q(1) - [bby (7) 4 bby (2)] - Activity(i) (3)

i=1



where Activity(i) is the switching activity on a particular
net, and by reducing this component, the power consumed
over long and power hungry programmable routing lines is
reduced. The new cost function with this component is the
following:

The perceived change in the cost function for each place-
ment change is:

Cost — \ TimingCost
ost = \-
PreviousTimingCost
WiringCost
1= [(1=7)-
( ) [( ) PreviousWiringCost @)

PowerCost
" PreviousPowerCost

where the previous costs are used to normalize the two
components of the cost function, and the A\ parameter is
used to weight the optimization importance of each of the
two components and the ~ factor is used to control the
importance of the power optimization component.

As described, the parameters v and A are used to control
the weighting of the cost function, or how much the cost
function cares about optimizing for a particular metric.
Previous research has shown that for a cost function that
attempts to optimize for power has a v equal to 0.8 and a \
equal to 0.5 [23]. In our previous research [21] we confirm
that these parameters are also suitable for our GA.

3. GA Framework and Modifications for
FPGA Placement

We previously built our genetic algorithm FPGA placer
that includes power optimizations and describe the details
of this algorithm here [21]. In this section we review some
of these details, but do not cover all the details. In particular,
we will describe genetic strings, the mutation operator, the
crossover operator, and the parameters in the GA framework.

3.1 The Genome for Placement

Genetic algorithms (GA) and evolutionary programming
algorithms have been previously implemented and explored
for FPGA placement. We use a genome similar to the
implementation by Venkatraman ez. al. [19] in which they
implemented a GA based placer in VPR 4.3 (the predecessor
to VPR 5.0). In their work, each cluster’s location on the
FPGA array is a gene, and the 2-D location of each of the
clusters forms an individuals genome. Figure 2 shows how a
genome for a design consisting of 20 elements is represented.

3.2 Parameters in our GA Framework

Similar to other GA implementations of FPGA placement,
our GA placement algorithm framework creates a genome
based on the x and y coordinates of each cluster in the design
(see Figure 2). In addition to how the genome is represented,
we define a number of parameters within the framework
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Sample Genome

Designlogic | o | 1 | 2 | 3| 4 |5 |6 | 7 |8 |9 |10|11 12|13 |14 |15 | 16

Location 0,1)](23)|(4.1)[(42)|(04)|(24)|(31)|(3,0)|(3,2) | (0,2) | (0,3) | (1.2) | (1,4) | (4,0) | (0,0) | (2,2) | (1,1)

Figure 2: Sample genome for 20 elements on a 5x5 FPGA

that control the GA. The size of a population is defined by
o. Using this number we define the parameters w, «, and
0 as percentages where w + o + 8 = 100%, and w% of
the population is the number of individuals from the current
generation to maintain as parents in the next generation, a%
of the population are the children of the parents, and 3% of
the population is randomly created new individuals.

Our GA measures an individuals fitness based on the cost
function shown previously in equation 4 and both A and ~
control the weighting of this cost function.

3.3 Mutation Operator

One of the operators in our GA framework uses a mu-
tation operator to create new individuals in a population.
Random swaps of clusters on the FPGA are the mutation
operations for our GA framework and this is similar to
how the SA works, and therefore, this mutation is related
to the term Rj;ni¢, wWhich controls the distance between
clusters for a random swap. The number of mutations per
new individual is defined by the parameters local_swaps%
and global_swaps% where local_swaps% multiplied by
the number of clusters in a circuit defines the number of
mutations (or swaps) to try where Rj;n,;: is equal to one,
and global_swaps% multiplied by the number of clusters
in a circuit is the number of mutations/swaps to try where
Ryimit 18 scheduled to be between 1 and the maximum size
of the FPGA array in one dimension.

Ryimit 1s a parameter that changes over time. In the SA
algorithm the parameter is decreased when a current set of
swaps does not result in any improvement. In our GA, we



Table 1: Configurable parameters for the GA

Parameter Description of parameter
w The percentage of the fittest individuals in the population to use as parents
«@ The percentage of the population created from the fittest individuals
15 The percentage of the population that is randomly created
o The number of individuals in the population
R_limit The distance between swaps on the FPGA array

global_swaps
local_swaps

The percentage of the number of clusters that defines the number of global mutations for a new individual
The percentage of the number of clusters that defines the number of local mutations for a new individual

A A cost function parameter to weight timing optimization importance
o7 A cost function parameter to weight power optimization importance

also schedule Ry, in a similar fashion, except that our
algorithm is a persistent algorithm. Therefore, once Ryt
equals 1 we then reset it to the maximum size of the FPGA
array in one dimension.

3.4 Crossover Operator

The crossover operator within our GA framework is
the partially mapped crossover (PMX) originally proposed
by Goldberg for the traveling salesman problem [3]. This
operator fits well with our placement algorithm since our
string of clusters requires that each cluster appears only once
in the genome string.
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Figure 3: Sample PMX mutation
Figure 3 shows a sample crossover mutation for 2 parents
generating 2 children. The figure has been color coded to

show how the parent genes are crossed for the example
picked genes 0, 2, 3, and 7. Note how in child 1 the gene

1 is not colored and child 2 the gene 6 is not color coded.
In both of these instances, these gene locations are mapped
by a series of remappings that the PMX operator achieves
using a remapping list.

In our current implementation of the GA framework, two
parents are chosen at random from the most fit percent of the
population as specified by parameter w to generate 2 children
as part of the a new population. Within the genome, 50%
of the clusters are randomly selected to stay constant from
parent 1 to child 1 and parent 2 to child 2, respectively (in
Figure 3 these clusters are in red. Then the PMX mapping is
done on the remaining clusters to map parent 2’s clusters to
child 1 and parent 1’s clusters to child 2 (as seen in Figure 3
in the orange and blue squares). The random swapping of
components is not necessarily the best choice, and this is an
area to study in the future.

4. Algorithmic Modification Results

To observe how different modifications to our persistent
genetic algorithm for placement helps delay inevitable con-
vergence we run the following experiment.

To attempt to maintain diversity we test the following
modifications:

« Parallel algorithmic threads [6] - we introduce 4 threads
initialized by different random seeds and execute these
threads in parallel

o A partial mapped crossover breeding operator [3] - we
use the PMX crossover to generate new individuals

o A partial mapped crossover breeding operator with
mutations - we use the PMX crossover to generate new
individuals and mutate these new individuals

Note that the 3 parameter is also a diversity factor, but this
factor was already introduced in our first study of persistent
placement with genetic algorithms, and it had very little
impact. We do, however, maintain a 10% value for this
parameter in our experiments.

Table 2 shows the parameters for our experiments. The
first column shows the parameter, the second column shows
the parameters value for the parallel GA threads, and column
three shows the parameter values for the PMX crossover with



Table 3: The FPGA architectural parameters

Parameter | W N K  Fen

Feout

Fy routing transistor sizing

Value | 144 10 5 0.18

0.1

3 uni-directional 27mwt

Table 2: Parameters for the GA parallel threads and

Crossover
Parameter ‘ Values for GA thread  Values for GA crossover
o 200 200
w 20% of o 20% of o
« 70% of o 70% of o
8 10% of o 10% of o
R_limit Variable Variable
global_swaps 30% 30% and 0%*
local_swaps 0% 0%
PMX No Yes
A 0.5 0.5
o' 0.8 0.8

and without (* in table) mutations. Note that A and v have
been experimentally determined based on out previous work.

The FPGA architectural parameters that describe the
FPGA we are mapping to are shown in Table 3. For a
more detailed explanation of these parameters please consult
[7], but for the sake of space and unnecessary details, we
do not describe these parameters here. The transistor size
for these experiments is based on our results in [22]. For
FPGA architects, note that W (channel width) is fixed to
144. This is done since we are only using one benchmark
and the constant value considerably increases the speed of
the routing algorithm. Instead of performing a binary search
and increasing W by 20% (as is normally done in CAD
experiments) we believe this fixed sized W is reasonable
for this experiment considering that persistent CAD will, in
reality, have W as a fixed parameter.

These experiments are run using the largest MCNC bench-
marks [24] where these benchmarks have been converted
to a netlist of clusters using an academic CAD flow. This
benchmark, clma, is passed into VPR 5.0 for the same FPGA
as described in Table 3. VPR 5.0 outputs the current best
placement every 30 minutes and executes for 2 days. Once
the algorithm is done, we then use these output placement
files and run them through VPR’s routing algorithm to find
the final speed and power consumption metrics, which we
report in the next section.

All the variations in the algorithms are run in Linux on
Intel Xeon 2.4 Ghz cores.

4.1 Results

Figure 4 shows the results for our experiment. The x-
axis shows the time over 2 days where we sampled the
progress of the persistent placement algorithms every 30
minutes. On the y-axis, energy consumption is shown in
terms of joules per clock. This metric is not truly reflective

of instantaneous power consumption, but at present we do
not have the capability to set the critical path in VPR 5.0.

In the figure, the upper line reflects the current best
random placement result. We use this as a baseline noting
that there is a significant difference between a random
solution and the GA versions. Next, the orange line stabilizes
after the first 30 minutes is the genetic algorithm with
crossover and no mutation. Interestingly enough, in the first
30 minutes, diversity is completely eliminated since there are
no mutations to introduce diversity back into the population.
Depending on the random seed this happens at a different
point.

The next collection of results are for the parallel threads.
First, note that the lines (particularly “ga seed 99”) some-
times seem to increase in energy consumption over the
persistent exploration. The reason for this is due to the
estimation models used to calculate the cost or fitness
function at the placement level. These models are not as
accurate as the models used after performing a complete
placement and routing of a design (which are the results
reported in this graph). In future work, it might be valuable
to perform what we call a deep fitness evaluation at intervals
to confirm population fitness at the placement level.

In general, the parallel approach shows that each thread
finds solutions that are all in the similar energy range,
but each thread itself seems to have converged relatively
early in the search. Finally, the crossover and mutation
operator performs similar to each of the parallel threads.
The population eventually becomes dedicated towards a local
minimum and cannot exit this area.

4.2 Discussion

A recent research paper by Mingjie and Wawrzynek [25]
looked at the concept of tunneling to low energy (local
optimal points) in SA for FPGA placement. Their claim is
that once an SA finds a low energy area, no hill climbing
technique can escape the localized search space. In our
examples, the parallel threads and crossover mutations are
in these low energy regions when we compare them relative
to the random results, and our tunneling capabilities are
essentially different start points (seeds).

To further persistent CAD for placement and maintain
diversity longer, we will need to address the second part
of the inevitable convergence problem, which is to identify
when a population has converged. With this capability we
can then explore if island model [26] for GAs or another
solution will better suit are persistent CAD.
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Figure 4: Energy consumption of CLMA benchmark over a 2 day execution
COHC]“S]OD [6] H. Mihlenbein, M. Schomisch, and J. Born, “The
parallel genetic algorithm as function optimizer,” Parallel
In thi | d . techni f . Computing, vol. 17, no. 6-7, pp. 619 — 632, 1991.
n this paper we explored various techmques ror main- [Online].  Available: http://www.sciencedirect.com/science/article/

taining a divergent population in GA for persistent FPGA
placement. Our results show that adding both parallel threads
of GA populations and including a PMX crossover operator
do not significantly impact the diversity of the population
in this domain as in all cases the populations converge in a
low energy search space. In future, we hope to take these
techniques and incorporate them into a more complex sys-
tem that will maintain divergence by searching in multiple
islands of solutions and then use our techniques to mix these
populations.
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