
GA-lapagos, an Open-Source C Framework including a
Python-based System for Data Analysis

Peter Jamieson
Department of Electrical and
Computer Engineering, Miami

University
Oxford, OH, USA

jamiespa@miamioh.edu

Ricardo Ferreira
Departament of Informatics,

Universidade Federal de Viçosa
Viçosa, Minas Gerais, Brazil

ricardo@ufv.br

José Augusto M. Nacif
Science and Technology Institute,
Universidade Federal de Viçosa
Florestal, Minas Gerais, Brazil

jnacif@ufv.br

ABSTRACT
In this work, we introduce, GA-lapagos, an open-source genetic
algorithm framework written in ‘C’ for 3 exemplar optimization
problems, and an accompanying Python-based data analysis scripts
to extract and produce results. We created this system to help
researchers implement a fast GA solving system for their problems
allowing them to implement and leverage many ideas implemented
in the research literature. Additionally, we provide a number of
compilation paths to parallel computational systems such as multi-
core, GPUs, and FPGAs. By building an executable framework and
outputting results in comma separated values (CSV) format, we
create a set of Python scripts to read the data and create graphs.

CCS CONCEPTS
• Mathematics of computing→ Combinatorial algorithms;

KEYWORDS
Genetic Algorithms, Software Framework
ACM Reference Format:
Peter Jamieson, Ricardo Ferreira, and José Augusto M. Nacif. 2020. GA-
lapagos, an Open-Source C Framework including a Python-based System
for Data Analysis. In Genetic and Evolutionary Computation Conference
Companion (GECCO ’20 Companion), July 8–12, 2020, Cancún, Mexico. ACM,
New York, NY, USA, 2 pages. https://doi.org/10.1145/3377929.3398113

1 INTRODUCTION
There exist a number instances of software frameworks and li-
braries for executing genetic algorithm (GA) to solve optimization
problems. Our framework, GA-lapagos, is created with the goals of
being fast, flexible, open-source, and targetable to multiple compu-
tation substrates. GA-lapagos satisfies these base goals in a system
that can target three exemplar problems: the travelling salesman
problem (TSP), the Multi-dimensional Knapsack Problem (MKP) [8],
and the Public Safety Network Mobile Station Placement Problem
(PSNPP) [5]. Each of these problems has different ways of encoding

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
GECCO ’20 Companion, July 8–12, 2020, Cancún, Mexico
© 2020 Copyright held by the owner/author(s). Publication rights licensed to the
Association for Computing Machinery.
ACM ISBN 978-1-4503-7127-8/20/07. . . $15.00
https://doi.org/10.1145/3377929.3398113

the genomes that represent problem solutions, and therefore, were,
initially, included to demonstrate the flexibility of our tool.

In particular, GA-lapagos is written in the ‘C’ programming
language, is released under the MIT open source license, and is
compiled and tested on standard Ubuntu Linux distributions. The
Github repository contains all the benchmarks, source code, and
build files to create and test the tool for the three described targeted
problems. In addition to the software framework, we include a
number of Python scripts to make it easy for researchers to execute
and analyze their problems by executing benchmarks and collecting
data. This data can be incorporated into graphs that show the
performance of these algorithms via Python scripts. This allows
us to get a detailed snapshot of the quality of each of our TSP GA
instances of the problems, thus demonstrating the capabilities of
our open-source tool that can be easily reproduced by others.

2 EXISTING GA LIBRARIES
Filho et. al. [3] wrote and early paper on “GA Programming En-
vironments” and include a taxonomy to quantify these systems.
This work is from 1994 and they provide a review of many of the
systems available at that time. GA-lapagos, is classified as a GA
Tool-kit for General-purpose systems based on their taxonomy.

More modern software has been produced since then including
the popular GALib [7], which still exists as a C++ library implemen-
tation. ECJ [1] is a Java based library that is maintained and Gagné
et. al. looked at these two libraries and their own, Open BEAGLE
(C++), in terms of flexibility of software packages. More modern
software systems have eclipsed the idea of just GAs. For example,
HeuristicLab [6], which is a .NET software tool, includes GAs as
part of its feature set, but GAs are only a small portion of the entire
software framework.

3 GA-lapagos FRAMEWORK
GA-lapagos is a “C” software framework for experimenting with

GAs. We will look at the basic features included in the software and
the exemplar GA problem implementations, noting that we plan to
expand GA-lapagos in the coming years.

The basic structure of a GA is shown in algorithm 1. Within
GA-lapagos we have implemented most of these functions as “C”
function pointers so that it is easy to implement new functions that
perform the action. The function pointers allow each GA algorith-
mic steps to be re-implemented (we include the listing number in 1
for reference): Population initialization (Line 2), Exit condition (Line

https://doi.org/10.1145/3377929.3398113
https://doi.org/10.1145/3377929.3398113

GECCO ’20 Companion, July 8–12, 2020, Cancún, Mexico Jamieson et al.

Algorithm 1 Genetic Algorithm
1: function Genetic_Algorithm()
2: 𝑝𝑜𝑝 = 𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒_𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛(𝑔𝑒𝑛𝑜𝑚𝑒, 𝑝𝑜𝑝_𝑠𝑖𝑧𝑒)
3:
4: while 𝑒𝑥𝑖𝑡_𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛() == 𝐹𝐴𝐿𝑆𝐸 do
5: 𝑟𝑎𝑛𝑘 = 𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒_𝑎𝑛𝑑_𝑟𝑎𝑛𝑘_𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛(𝑝𝑜𝑝)
6:
7: 𝑝𝑜𝑝 = 𝑐𝑟𝑒𝑎𝑡𝑒_𝑛𝑒𝑤_𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛(𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛,

8: 𝑐𝑟𝑜𝑠𝑠𝑜𝑣𝑒𝑟,

9: 𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛(𝑟𝑎𝑛𝑘))
10: end while
11: end function

4), Cost function (Line 5), Mutation operator (Line 7), Crossover
operator (Line 8), and Selection operator (Line 9).

At present, GA-lapagos includes three exemplar optimization
problems. We chose these three problems because of their unique
genome encoding and problem spaces, and the problems and re-
spective encoding are: Traveling Salesman Problem (TSP), Multi-
dimensional Knapsack Problem (MKP) [8], and Public Safety Net-
work Mobile Station Placement Problem (PSNPP) [5].

Because of the different genome encodings, we have imple-
mented a number of crossover operators [2] and selection op-
erators for the above problems. For the crossover operator, we
have implemented the following crossover operators for binary en-
codings: One-point Crossover, Two-point Crossover, and Uniform
Crossover; the following for permutation encodings: PartialMapped
Crossover, Position-based Crossover, Cycle Crossover, Modified Cy-
cle Crossover, Ordered Crossover, and Confined Swap Crossover.

We have implemented the following selection functions for
choosing the parents to crossover (where these apply regardless of
encoding): Roulette, Stochastic Universal Sampling, Tournament,
Rank, and Truncation.

Additionally, we have provided researchers with a means to
target parallel computational substrates, and these are: Multicore
via Pthreads, GPU via CUDA, and FPGA via High-Level Synthesis.
Based on our experience in this space, we believe that the GPU
and threading implementations can be more, tightly, integrated
into the codebase, but at present we have only done this for a
simple threading implementation. Both the GPU and FPGA paths
are illustrated by a one-off refactoring of the code, partially because
of the use of function pointers.

3.1 Flexible Parameters for Experiments
We use a configuration file in XML file format for configuration
of the framework for the optimization problem to execute and
the options to select including algorithmic parameters such as the
percent of a new population to be mutated and which crossover
and selection operator to use. This approach is similar to the one
we took in our open-source FPGA software [4] , and it allows for
the quick configuration of many problems to execute.

The goal of GA-lapagos is to be flexible and configurable for a
wide range of experiments and target computation platforms, and
to provide sample problem instances with a GA to test out problems.
We have released this as open source under the MIT license and
can be accessed at: https://github.com/drpaj12/GA-lapagos.

3.2 Data Extraction and Analysis
The last aspect of GA-lapagos that we believe we should describe is
how we generate results, extract the information, and create tables
and graphs for experiments. While we do not consider these ideas
to be novel, they are useful for any research software system, and
these tools and methods can be applied in a number of systems for
the benefit of the researcher.

We use Python scripts to batch execute the benchmarks, aggre-
gate the data generated by the benchmarks, and process the data as
either graphs or tables depending on presentation needs. For this,
the first step is to have GA-lapagos output information to a text file
in Comma Separated Values (CSV) format. The reason for this, is it
makes the parsing of the data by a Python script trivial by using the
Pandas Library (with the API call to read_csv() into DataFrames).

Finally, to create graphs we use the matlibplot library and the
plethora of available graph types. These graphs are easy to generate
from the DataFrame structure used in Pandas. For Latex tables, we
use the Pandas API again with pandas.DataFrame.to_latex to create
the table or use iterative string outputs to create the text for the
table for import into our latex documents. By using these simple
techniques we can quickly generate, aggregate, and create all of
the data provided in the next section.

4 CONCLUSION
In this paper, we described our open source tool and framework
built for GAs, GA-lapagos, can execute, produce, and generate data
from the three optimization problems to analyze aspects of GAs.

The release of both the code and experimental setup is funda-
mental in improving GA research. For example, in our attempt to
replicate some of the results from previous work, it is impossible
given the data and code provided. Frameworks, like GA-lapagos,
that are released openly allow other researchers to confirm the
results and find errors in ours and others methodologies.

REFERENCES
[1] Sean Luke, Liviu Panait, Z Skolicki, J Bassett, R Hubley, and A Chircop. 2009.

ECJ: a java-based evolutionary computation and genetic programming research
system. Disponıvel em http://www. cs. umd. edu/projetc/plus/ec/ecj/, última visita
em 24 (2009).

[2] G Pavai and TV Geetha. 2016. A survey on crossover operators. ACM Computing
Surveys (CSUR) 49, 4 (2016), 1–43.

[3] José L Ribeiro Filho, Philip C Treleaven, and Cesare Alippi. 1994. Genetic-algorithm
programming environments. Computer 27, 6 (1994), 28–43.

[4] J. Rose, J. Luu, C.W. Yu, O. Densmore, J. Goeders, A. Somerville, K.B. Kent, P.
Jamieson, and J. Anderson. 2012. The VTR project: architecture and CAD for
FPGAs from verilog to routing. In Proceedings of the ACM/SIGDA international
symposium on Field Programmable Gate Arrays. 77–86. http://dl.acm.org/citation.
cfm?id=2145708

[5] Chen Shen, Mira Yun, Amrinder Arora, and Hyeong-Ah Choi. 2019. Efficient
Mobile Base Station Placement for First Responders in Public Safety Networks. In
Future of Information and Communication Conference. Springer, 634–644.

[6] StefanWagner, Gabriel Kronberger, Andreas Beham, Michael Kommenda, Andreas
Scheibenpflug, Erik Pitzer, Stefan Vonolfen, Monika Kofler, Stephan Winkler,
Viktoria Dorfer, et al. 2014. Architecture and design of the heuristiclab optimization
environment. In Advanced methods and applications in computational intelligence.
Springer, 197–261.

[7] Matthew Wall. 1996. GAlib: A C++ library of genetic algorithm components.
Mechanical Engineering Department, Massachusetts Institute of Technology 87 (1996),
54.

[8] H Martin Weingartner and David N Ness. 1967. Methods for the solution of the
multidimensional 0/1 knapsack problem. Operations Research 15, 1 (1967), 83–103.

https://github.com/drpaj12/GA-lapagos
http://dl.acm.org/citation.cfm?id=2145708
http://dl.acm.org/citation.cfm?id=2145708

	Abstract
	1 Introduction
	2 Existing GA libraries
	3 GA-lapagos Framework
	3.1 Flexible Parameters for Experiments
	3.2 Data Extraction and Analysis

	4 Conclusion
	References

