
More Missing the Boat - Arduino, Raspberry Pi, and

Small Prototyping Boards and Engineering

Education Needs Them

Peter Jamieson

Department of Electrical and

Computer Engineering

Miami University

Oxford, Ohio 45056

Email: jamiespa@miamioh.edu

Jeff Herdtner

Department of Electrical and

Computer Engineering

Miami University

Oxford, Ohio 45056

Email: herdtner@miamioh.edu

Abstract—In this work, we describe a range of prototyping
boards such as Arduino, Raspberry Pi, and BeagleBone Black,
and we show how these devices are being used in our ECE cur-
riculum in a range of courses for projects. We describe the con-
tinuing challenges we have with adopting such technology from
an educational standpoint, and some best practices/techniques we
have learned and adopted to include these devices in our courses.
We believe integrating these devices into our course flow is of a
huge benefit to both our curriculum and our students.

I. INTRODUCTION

In 2011, we wrote a paper called “Arduino for Teaching
Embedded Systems. Are Computer Scientists and Engineering
Educators Missing the Boat?” that asked the question if electri-
cal and computer engineering (ECE) was ignoring the growth
of Arduino (arduino.cc) prototyping boards as a platform to
teach aspects of ECE, and in particular, to teach embedded
systems [1]. At that time, the Arduino world was showing large
growth because the artist created community was allowing
people from all walks of life to use a micro-controllers and
electronics to implement all sorts of projects in a strong sharing
community. This community differed significantly from the
heavy front-end learning expected by engineers who used and
supported traditional microprocessor boards. We felt that these
devices had some place in traditional ECE education and we
described how a course on embedded systems used Arduinos
and the pros and cons of such devices.

The Arduino has continued to have success in the “Maker”
world, and our curriculum has expanded the use of the Arduino
to more than the embedded system course. Additionally, we
have opened our embedded system design course to more than
just Arduino boards and have seen students use Raspberry
Pi (raspberrypi.org) and BeagleBone Black Boards (beagle-
board.org). These new boards still have much of the open
source and maker communities, but the devices themselves
are more powerful allowing even more design possibilities.

In this paper, we describe what these devices are, and
then, we describe how these devices are being used in our
ECE curriculum in a range of courses. With our experiences,
we describe the continuing challenges we have with adopting
such technology from an educational standpoint and some best
practices/techniques we have learned and adopted to use these

devices in our courses. In particular, with the large wealth
of open source projects available online, how do we assess
projects to determine what students are building and learning.
Additionally, we make claims as to why we believe integrating
of these devices into our course flow is of a huge benefit to
both our curriculum and the student.

The remainder of this paper is organized as follows: section
II provides a background these prototyping devices and open
source and how people have assessed projects. Section III takes
a more detailed look at the prototyping devices, and section IV
describes student projects that used them. Section V provides
a description of best practices we have adopted for using these
devices in courses. Section VI includes a short discussion and
conclusion of this work.

II. BACKGROUND

The three main areas we address in this paper are Project
Based Learning (PBL), open source projects assessment, and
prototyping boards used in ECE curriculum.

A. Project Based Learning

Project Based Learning (PBL) curricula (which is a version
of Problem Based Learning and has a wide literature base
[2]) is normal in many fields with examples in engineering ,
business, and medicine [3], [4], [5]. PBL pedagogy centers
learning around the activity of the student. The approach
focuses on building projects and allowing the student to learn
on the fly as they face problems. Projects are spaced throughout
the degree, hence the name PBL curriculum. The accreditation
agency, ABET, among other entities, influenced engineering
programs into including a major capstone around 1995 to 1997
[5]. For computer engineering curriculum, lab only courses [6],
[7] slowly evolved to include both labs and final projects. The
senior capstone has been studied to help understand how to
prepare students for this culminating experience [8], [9].

Among the vast range of research on the impact of PBL
on engineering curriculum (among other areas) there has been
some focus on both the usefulness [10] and the assessment
of projects (though assessment is still lacking). Much of the



research on assessment of PBL is lacking and most contribu-
tions are focused on describing the PBL course [11]. There are
some academic reviews by Dym et. al. [3] and Graham [12].

B. Open Source Projects

Within the domain of PBL, two questions tend to arise:
First, should projects be allowed to use the available plethora
of projects on the web released as open source software (OSS)
and projects (OSP)? Second, if OSS and OSP are allowed to
be used, then how do we assess students contributions and
learning?

The majority of literature that, partially, address these
issues is from the OSS and computer science and software
engineering education. In particular, many of the early docu-
mented attempts are in teaching software engineering use OSS
[13], [14]. This includes using the most popular OSS project,
Linux, to help teach operating systems [15], and includes
senior capstone student work [16].

Assessment of these projects is not not deeply examined,
but there are a few documents that talk to the issue. Nascimento
et. al. go into the most depth with their study on the research
issues of using OSS in courses [17]. In addition, Pedroni et. al.
take a look at assessment techniques, but focus more on student
perception of the value of the experience [18]. Unrelated to
academic class assessment, Rigby et. al. [19] take a look
at peer-review assessment of software, which is a common
practice in software design, and has some ideas that could be
used in a classroom setting.

C. Prototyping Boards

In electrical and computer engineering (among other ma-
jors) the prototyping board is a prefabricated board that in-
cludes a microchip or set of chips that allows various types of
systems to be experimented with, designed, and tested without
having to build the PCB (Printed circuit board) and test that
part of the system. The word prototyping implies that the
system, once, completed, could be designed more efficiently,
but during prototyping most of the systems features can be
used on these boards. These boards are used both in industry
and education.

We do not provide a comprehensive list of such
boards, but some common examples include: Altera’s [20]
FPGA prototyping boards such as Terasic’s DE2 board
that allow full systems to be implemented. Similarly,
an open source FPGA related board called, NetFPGA
[21], is being used to kickstart a prototyping board
- ONetSwitch www.kickstarter.com/projects/onetswitch/
onetswitch-open-source-hardware-for-networking. DSP
boards, such as Texas Instrument’s TMS320C6713 DSP
Starter Kit (DSK) www.ti.com/tool/tmdsdsk6713, can
implement DSP applications. Microprocessor boards,
including the ones we will discuss in this paper (Arduino
www.arduino.cc/, Raspberry Pi www.raspberrypi.org/, and
BeagleBoard beagleboard.org, allow embedded systems
to be prototyped. Ettus Research’s USRP devices used in
implementing Software Defined Radio systems, might also
be considered as a form of prototyping board that has had
an impact on education by allowing students to work in the
radio domain [22].

Though these boards are used in undergraduate education,
there is little discussion or evaluation on how to use them in
courses. Pritchard and Mina do take a look at similar types of
prototyping boards and classify them from three perspectives:
hardware intensive, software intensive, and ease of implemen-
tation. Other work has focused on remote lab implementation,
which includes a large body of scholarly work (we suggest a
review paper [23]). Additionally, since microprocessors were
available they have been included in labs and continue to be a
major part of computer engineering [24]. PBL and prototyping
boards make a good mix and multiple efforts have focused on
this including robots embedded throughout the curriculum [25]
[26], and FPGA boards for projects and learning digital logic
[27], [28], [29].

The major question we have is with the availability of
open source designs, cheap prototyping boards, and access to
hobbyists and professional, how do we include these powerful
tools in the modern ECE curriculum?

III. ARDUINO, RASPBERRY PI, AND BEAGLEBONE

BLACK ... OH MY

A. Arduino

“Arduino is an open-source electronics prototyping plat-
form based on flexible, easy-to-use hardware and software.
It’s intended for artists, designers, hobbyists, and anyone in-
terested in creating interactive objects or environments” [30].

The UNO (the base system) consists of a microcontroller
(an ATmega328 [31] microprocessor), a USB to serial chip,
and an AC to DC power converter. The UNO can either be
built by hand or can be bought premade from a seller such
as sparkfun.com costing approximately 25 USD. The Arduino
software platform is written in Java and is based, mainly, on
Processing [32] (a language developed for artists). The IDE
is installed on a machine and then can program the UNO
over the USB. The base IDE includes a number of examples
for blinking LEDs, making noises, etc. The UNO is only one
type of Arduino board and many others exist in varying form
factors.

We would classify the Arduino UNO as a simple mi-
croprocessor board that is easy to use for bit-banging based
projects. Bit-banging is the fine grain manipulation and control
of single bits or pins. The device is easy to learn to the point
that the student can learn how to use the device with web
resources alone without any formal instruction. This is because
of the community that supports Arduino started with artists
and these people provide significant help to beginners (as they
are) as opposed to engineering forums for other micropro-
cessors, which include responses such as, “go do your own
homework/assignment”. The ease of use and friendliness of
the community does, however, bring a challenge to educators
when assessing projects developed on these devices (which we
will discuss later).

B. Raspberry Pi

“The Raspberry Pi is a low cost, credit-card sized computer
that plugs into a computer monitor or TV, and uses a standard
keyboard and mouse. It is a capable little device that enables
people of all ages to explore computing, and to learn how to



program in languages like Scratch and Python” raspberrypi.
org.

The Raspberry Pi (we will call it just Pi) is a full-fledged
computing system with a 900 MHz ARM based processor
(www.arm.com/). The board can be loaded with the Linux
and GNU tools, a monitor can be connected to it via the
HDMI port, and input devices, such as a mouse or keyboard,
can be connected to the USB ports. In other words, the Pi
is a full computer that can be used for embedded system
projects, but is also useful in the domain of implementing
servers and other computer system applications. The additional
processing power makes the Pi a much more powerful device,
but accessing and using the general purpose input/out (GPIO)
ports is more difficult and makes the Pi less useful as a
starter device when controlling (bit-banging) simple electronic
circuits. The Pi costs approximately 40 USD.

The Raspberry Pi community is also very active and
helpful. However, a student needs to learn command line usage
in Linux, programming tools in Linux, and other computing
concepts/skills, which makes it harder to use for beginners
to programming. Since the device is newer than the Arduino
there are not as many open source resources, but there is more
projects than one person can track meaning that assessment is
equally challenging.

C. BeagleBone Black

“Makers, educators, explorers, professional engineers and
corporations seeking to build upon a rich ecosystem are all
encouraged to participate in BeagleBoard.org. With so much
openness and thousands upon thousands of examples of people
doing fun, interesting and profitable things with Beagles,
you’re missing out if you don’t count yourself in for whom
Beagle is intended. beagleboard.org

The BeagleBone Black (which we will call BBlack) pro-
vides functionality of both Arduino and Pi. The BBlack has
a powerful processor (ARM processor at 1GHz) that can
run Linux similar to the Pi, but the BBlack also has I/O
capabilities to do simple bit-banging with circuits to the
point that the BBlack can run the Arduino IDE (with a
little bit of configuration www.logicsupply.com/blog/2014/09/
24/tutorial-running-arduino-ide-beaglebone-black/.

The BBlack is also low cost and costs approximately 45
USD. The community is open and helpful, but is smaller than
other two groups, but has the benefit of leveraging various
projects that are designed for the other prototyping boards.

IV. STUDENT PROJECTS AND COURSES USING THESE

BOARDS

A. Courses using these boards

At Miami, the Arduino UNO has been used in a number
of courses. In particular, the UNO is used in our introductory
electrical and computer engineering course (ECE 102), our
second course on circuits (ECE 303), our embedded systems
design course (ECE 387), and optionally, in our computer
organization course (ECE 289) and our senior capstone. In
the introductory course and the circuit course, the department
provides kits for the students, but for the other courses,

students are expected to purchase the device in lieu of a
textbook.

For projects in both our Senior Capstone and embedded
system design, both the Pi and BBlack are common choices
depending on the needs of the project. Again, these devices
are purchased by the students both because of their low cost
and student preference to have the device to play with and use
outside their course work.

The amount of instruction provided on how to use these
devices is very little. In the introductory course (ECE 102), the
Arduino is introduced over two 55 minute lectures where the
instructor shows how to connect an LED and pull-up switch.
A basic program that shows how a light can be dimmed using
pulse width modulation is shown to the students. From there,
a student is expected to complete six labs using arduino and
basic circuits to complete 3 assigned tasks:

• Knight Rider display which is a timed lighting of a
series of LEDs

• Control a servo with a switch

• Build a simple ball catching system

and 3 student/TA created challenges that create a problem that
needs to be solved using the device, some components, and
some creativity.

In the circuit course (ECE 303), additional instruction is
provided on the Arduino since some of the students come from
outside the electrical and computer engineering department
(for example, mechanical engineers), and they require a basic
introduction to the board. Other than this, students are expected
to learn how to program and interface their circuits with the
Arduino by accessing tutorials and projects on the web.

For the Pi and BBlack, no formal instruction is provided,
and students are expected to learn how to use these devices
on their own. Computer engineering students will have learned
command line Linux instructions and the compilation process
in their computer organization course (ECE 289), but electrical
engineers, who do not have this training, are expected to learn
this as needed for their projects.

B. Student Projects

With these devices, students have created some impressive
projects. The majority of these impressive projects are built in
the ECE387 course and senior capstone design projects. For
example, in ECE387 students created auto-tracking paintball
guns, built a segway like device, built a bug-tracking system,
and hypno-cubes. Videos and source code for many of these
projects can be found at www.users.miamioh.edu/jamiespa/
teaching.html, but as Google Code hosting service will be
terminated in 2015, the availability of these design files will
be for a limited time.

There are also a number of senior design projects that
use these devices as the microprocessors in the student’s
designs. For example, in 2015 a group of students is building
a microphone array that can distinguish people location in
a room based on conversation. In 2014, a group of students
used vibration sensors and a Raspberry Pi to triangulate the
location of people based on their foot steps. These are just



a few examples of complex systems that students can create
with these devices.

Lastly, the IEEE student group commonly uses these de-
vices for their projects which includes a 60 inch spectrum
analyzer (built with CPU fans, foam chips, and led lighting)
and a coin operated arcade game emulator. The availability of
these boards has vastly expanded the projects that the student
run group can do.

V. CHALLENGES WITH ADOPTING PROTOTYPING BOARDS

As great as these microprocessor prototyping boards are
based on functionality and low cost, including them in courses
has a number of challenges. In particular, the most difficult
challenge is with how to deal with the availability of open-
source projects and shields and libraries, and then assessing
what a student has done. We will describe what our current
best practices are, but by no means have we solved the problem
of assessment and project creation completely.

A. Assessing Projects with the Availability of Open-Source

We have been using Arduino UNO in classes since 2010
and were one of the earlier adopters in this community. In
2010, there was a significantly large community of users
and open source projects, but since then there has been a
continuous increase of projects and people. The number of
Arduino shields and supported libraries, where a shield is an
easily connectable separate device that can be attached to an
Arduino and allows interfacing with another chip (for example
a motor drive shield), has also increased significantly making
it possible to use complex chips without students having to
understand much on interfacing. Additionally, libraries that
support both shields and interfacing with sensors, actuators,
and other chips are continuously being improved. All of this
means that there is a massive amount of information, code,
and designs that students can leverage in creating their own
designs. The question remains, how can we assess the idea of
“their project” and verify that students are learning.

One simple solution is to move towards first principles and
push students do do low-level interfacing without libraries.
Arguably, this approach should be done at least once since it
helps student’s understand some of the details in interfacing.
However, forcing students to reinvent the wheel for every
device they will use is less useful since, arguably, in their
industrial jobs the goal will be to leverage existing designs
and code bases to create larger systems.

Another solution is to allow students to use any code
base and assess the system based on the final product. In
this approach, the instructor assumes that to create a complex
system that a student will spend significant time understanding
existing libraries, how those libraries can be used, and mixing
more than one library/api together to achieve a complex task.
We used this approach for a number of years, but we have
begun to notice that some students are building projects that are
similar to complete kits that can be purchased. For example,
the hypno-cubes student’s created in 2010 and 2012 can now
be built with the purchase of a kit. For this reason, these types
of projects are no longer considered an appropriate project.

The third approach we have used is to have the students
deliberately prepare a document that shows what code they

used and what they have added/designed. In this approach,
we allow students to use any code, but they are required to
show how their code is differentiated from the existing code.
In this way, a student is required to describe how they created
their system and used existing modules within their system.
This process is similar to a diffing a code-base from the open-
source base, but we require the student to illustrate this in a
single organized document that allows instructors to easily see
what the students have done and what was already available.
The downside of this approach is that it requires the students
to spend additional time organizing their design in the final
deliverable. Also, this approach can make the students design
appear simple, when in reality, to even get each device to
interface requires significant time and learning even with an
existing code base.

Of each of these approaches, the main question is what
are the learning objectives. In the courses where we use these
devices, the main learning objectives in the third year is a
“create” (metacognitive and create) and in the introductory
courses is a “use” (metacognitive and apply) in the Revised
Bloom Taxonomy [33]. At these levels in the taxonomy, the
question of what the student is learning is mainly related to the
product, and all three approaches are sufficient for assessment.
However, to promote creativity and reflection, we are moving
towards our last approach in which students need to show
their contributions differentiated from existing code-base and
examples.

B. Project progress and success

Another significant challenge with projects, which is true
independent of working with the above described prototyping
boards, is scale of projects and ensuring student progress
towards completing a successful project. In particular, students
that transition into college think that a project can be completed
in a single (long) evening, have a difficult time creating a
project, and have very little skill at project organization. Ad-
ditionally, students face many challenges in terms of working
in group projects such as finding common meeting times, and
dealing with non-contributing team members [34], [35], [36].

For project creation, we use one of two approaches; first,
student’s propose (orally and written) what they would like to
do, which the instructor can modify, make suggestions, and
provide fallback options, and two, a custom project is created
that all students will do in the class. In both situations, the
projects are successful based on the experience of the instructor
and their understanding of what is doable in the time allotted.

To ensure progress we have tried to implement progress
meetings, and these are successful for senior design projects,
but they seem to have very little impact on early courses. We
believe reality is that until a student experiences how difficult
a project is to complete in a very short period of time, they do
not learn to work continuously through a semester. As much as
we provide direction, the learner has to experience how hard
it is to get things built and working.

We also provide instruction on the use of design method-
ologies such as agile design [37], but this is not necessarily
the focus of the courses the projects are in, and are ideas that
tend to be taught later in the curriculum. Even with knowledge
of these methodologies and best practices, students still have a



difficult time applying the techniques to improve the progress
of their projects.

VI. CONCLUSION

In this paper, our goal was to expose educators to the
benefits and challenges of using modern prototyping micro-
processor boards - Arduino, Raspberry Pi, and BeagleBone
Black. Each of these devices has been used in a number of
our courses for student projects of many different levels. The
main challenge with using these boards is identifying and
assessing student projects based on the availability of open
source designs and the community that supports these projects.
We describe how we approach these problems, but we still do
not believe we have perfected the use of these devices.

Overall, the students like the low cost of these devices and
the ease of use that allows them to create significant projects.
As instructors, the projects that are being delivered show that
students are improving on system design and are delving into
real engineering systems motivated by their own creativity.
This we believe justifies adopting these boards in a curriculum
with the risks described earlier.

REFERENCES

[1] P. Jamieson, “Arduino for teaching embedded systems. are computer
scientists and engineering educators missing the boat?” in Proc. FECS,
2010, pp. 289–294.

[2] J. W. Thomas, “A review of research on project-based learning,” 2000.

[3] C. L. Dym, A. M. Agogino, D. D. Frey, and L. J. Leifer,
“Engineering design thinking, teaching, and learning,” Journal of

Engineering Education, vol. 94, pp. 103–120, 2005. [Online]. Available:
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.72.1593

[4] J. Macias-Guarasa, J. Montero, R. San-Segundo, A. Araujo, and
O. Nieto-Taladriz, “A project-based learning approach to design
electronic systems curricula,” Education, IEEE Transactions on,
vol. 49, no. 3, pp. 389 –397, 2006. [Online]. Available: http:
//ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1668283

[5] A. Dutson, R. H. Todd, S. P. Magleby, and C. D. Sorensen, “A
review of literature on teaching engineering design . . .” Journal of

Engineering Education, vol. 86, pp. 17–28, 1997. [Online]. Available:
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.33.3949

[6] S. Areibi, “A first course in digital design using vhdl and
programmable logic,” in Frontiers in Education Conference, 2001.

31st Annual, vol. 1, 2001, pp. TIC –19–23. [Online]. Available:
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.16.3048

[7] K. E. Newman, J. O. Hamblen, S. Member, T. S. Hall, and S. Member,
“An introductory digital design course using a low cost autonomous
robot,” IEEE Transactions on Education, vol. 45, pp. 289–296, 2002.

[8] C. J. Lesko, Jr., “Building a framework for the senior capstone
experience in an information computer technology program,” in
Proceedings of the 10th ACM conference on SIG-information

technology education, ser. SIGITE ’09, 2009, pp. 245–251. [Online].
Available: http://doi.acm.org/10.1145/1631728.1631804

[9] J. Goldberg, “Preparing students for capstone design [senior
design],” Engineering in Medicine and Biology Magazine, IEEE,
vol. 28, no. 6, pp. 98 –100, 2009. [Online]. Available: http:
//ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5335729

[10] R. A. Atadero, K. E. Rambo-Hernandez, and M. M. Balgopal, “Using
social cognitive career theory to assess student outcomes of group
design projects in statics,” Journal of Engineering Education, vol. 104,
no. 1, pp. 55–73, 2015.

[11] L. Helle, P. Tynjälä, and E. Olkinuora, “Project-based learning in post-
secondary education–theory, practice and rubber sling shots,” Higher

Education, vol. 51, no. 2, pp. 287–314, 2006.

[12] R. Graham, “Uk approaches to engineering project-
based learning,” White Paper sponsored by the Bernard

M. Gordon/MIT Engineering Leadership Program.

http://web.mit.edu/gordonelp/ukpjblwhitepaper2010.pdf, 2010.

[13] D. Carrington and S.-K. Kim, “Teaching software design with open
source software,” in Frontiers in Education, 2003. FIE 2003 33rd

Annual, vol. 3. IEEE, 2003, pp. S1C–9.

[14] S. S. Gokhale, T. Smith, and R. McCartney, “Integrating open source
software into software engineering curriculum: Challenges in selecting
projects,” in Proceedings of the First International Workshop on Soft-

ware Engineering Education Based on Real-World Experiences. IEEE
Press, 2012, pp. 9–12.

[15] R. Hess and P. Paulson, “Linux kernel projects for an undergraduate
operating systems course,” in Proceedings of the 41st ACM technical

symposium on Computer science education. ACM, 2010, pp. 485–489.

[16] K.-B. Yue, Z. Damania, R. Nilekani, and K. Abeysekera, “The use of
free and open source software in real-world capstone projects,” Journal

of Computing Sciences in Colleges, vol. 26, no. 4, pp. 85–92, 2011.

[17] D. M. Nascimento, K. Cox, T. Almeida, W. Sampaio, R. Almeida Bit-
tencourt, R. Souza, and C. Chavez, “Using open source projects
in software engineering education: A systematic mapping study,” in
Frontiers in Education Conference, 2013 IEEE. IEEE, 2013, pp. 1837–
1843.

[18] M. Pedroni, T. Bay, M. Oriol, and A. Pedroni, “Open source projects in
programming courses,” in ACM SIGCSE Bulletin, vol. 39, no. 1. ACM,
2007, pp. 454–458.

[19] P. C. Rigby, D. M. German, L. Cowen, and M.-A. Storey, “Peer review
on open-source software projects: Parameters, statistical models, and
theory,” ACM Transactions on Software Engineering and Methodology

(TOSEM), vol. 23, no. 4, p. 35, 2014.

[20] Altera, “ALTERA at http://www.altera.com,” 2010.

[21] J. W. Lockwood, N. McKeown, G. Watson, G. Gibb, P. Hartke, J. Naous,
R. Raghuraman, and J. Luo, “Netfpga–an open platform for gigabit-rate
network switching and routing,” in Microelectronic Systems Education,

2007. MSE’07. IEEE International Conference on. IEEE, 2007, pp.
160–161.

[22] S. Katz and J. Flynn, “Using software defined radio (sdr) to demonstrate
concepts in communications and signal processing courses,” in Frontiers

in Education Conference, 2009. FIE’09. 39th IEEE. IEEE, 2009, pp.
1–6.

[23] L. Gomes and J. G. Zubı́a, Advances on remote laboratories and e-

learning experiences. Universidad de Deusto, 2008, vol. 6.

[24] W. Albrecht, P. Bender, and K. Kussmann, “Integrating microcontrollers
in undergraduate curriculum,” Journal of Computing Sciences in Col-

leges, vol. 27, no. 4, pp. 45–52, 2012.

[25] R. L. Traylor, D. Heer, and T. S. Fiez, “Using an integrated platform
for learning to reinvent engineering education,” IEEE Trans. Education,
vol. 46, no. 4, pp. 409–419, 2003.

[26] T. A. Roppel, J. Y. Hung, S. W. Wentworth, and A. S. Hodel, “An
interdisciplinary laboratory sequence in electrical and computer engi-
neering: Curriculum design and assessment results,” Education, IEEE

Transactions on, vol. 43, no. 2, pp. 143–152, 2000.

[27] D. Bouldin, “Impacting education using fpgas,” in Parallel and Dis-

tributed Processing Symposium, 2004. Proceedings. 18th International.
IEEE, 2004, p. 142.

[28] C. M. Kellett, “A project-based learning approach to programmable
logic design and computer architecture.” IEEE transactions on educa-

tion, vol. 55, no. 3, pp. 378–383, 2012.

[29] A. J. Araujo and J. C. Alves, “A project based methodology to teach
a course on advanced digital systems design,” WSEAS Transactions on

Advances in Engineering Education, vol. 5, no. 6, pp. 437–446, 2008.

[30] Arduino, “Available at http://www.arduino.cc,” 2010.

[31] 8-bit AVR Microcontroller, ATMEL, 2011. [Online]. Available:
http://www.atmel.com/dyn/resources/prod documents/doc8161.pdf

[32] C. Reas, B. Fry, and J. Maeda, Processing: A Programming Handbook

for Visual Designers and Artists. The MIT Press, 2007.

[33] L. W. Anderson, D. R. Krathwohl, and B. S. Bloom, A taxonomy for

learning, teaching, and assessing: A revision of Bloom’s taxonomy of

educational objectives. Allyn & Bacon, 2001.



[34] B. A. Oakley, D. M. Hanna, Z. Kuzmyn, and R. M. Felder, “Best
practices involving teamwork in the classroom: Results from a survey of
6435 engineering student respondents,” Education, IEEE Transactions

on, vol. 50, no. 3, pp. 266–272, 2007.

[35] V. Pieterse and L. Thompson, “Academic alignment to reduce the
presence of ‘social loafers‘ and ‘diligent isolates‘ in student teams,”
Teaching in Higher Education, vol. 15, no. 4, pp. 355–367, 2010.

[36] M. Borrego, J. Karlin, L. D. McNair, and K. Beddoes, “Team effec-
tiveness theory from industrial and organizational psychology applied
to engineering student project teams: A research review,” Journal of

Engineering Education, vol. 102, no. 4, pp. 472–512, 2013.

[37] R. C. Martin, Agile software development: principles, patterns, and

practices. Prentice Hall PTR, 2003.


