Arduino for Teaching Embedded Systems. Are Computer Scientists
and Engineering Educators Missing the Boat?

Peter Jamieson
Miami University, Oxford, OH, 45056
Email: jamiespa@muohio.edu

Abstract—In this work, we look at the Arduino as a
design platform for a course on embedded systems and ask
the question, is the Arduino platform suitable for teaching
computer engineers and computer scientists an embedded
system course with? To examine this question, we describe a
project based learning embedded system course that we have
taught and identify which topics are covered in it compared
to the IEEE/ACM recommendations. The major contention
lies in the idea that students can access and use an open
source community that is focused on getting things working
as opposed to strictly looking at low-level technical aspects
of embedded systems. Additionally, the presence of open
source and reusable designs makes it difficult to identify
what a student is doing. In our experience, using the Arduino
exposes students to sufficient complexity and challenges for
an embedded system course.

Keywords: Arduino, Embedded Systems, PBL

1. Introduction

In a recent article at Make online, titled, “Why the
Arduino Won and Why It’s Here to Stay” [1], the author
describes the world of microcontroller development kits and
how the Arduino [2] has captured the hearts of many non-
engineers. The question we pose in this paper is, should
the Arduino and related open source projects be used as a
platform to teach embedded systems?

To address this question we first try to establish which
concepts/outcomes do we expect from a undergraduate level
course in embedded systems. We then describe a course
we have taught on embedded systems using the Arduino
Uno, and discuss how the course does or does not satisfy
these various topics. We find that the device as a platform,
though not perfect, has many benefits that help students
build devices that would not, likely, be possible with other
control platforms. This is mainly due to the Arduino com-
munity, which consists of not only traditional engineers and
scientists, but has a large contingency of artists and DIY
hobbyists. The size of this community, the basic desire
for users to get something working, and the open sharing
of designs means students have access to a huge base of
knowledge, that they can leverage to build their systems.
We compare this with our experience in the previous year

of the course where only FPGAs and PIC microcontrollers
were available.

Even if using the Arduino kit allows students to avoid
experiencing some of the low-level challenges of embedded
system software and hardware design, the student still expe-
riences a large majority of these concepts with the added
benefit of building working and interesting designs. This
point is debated from a philosophical standpoint in a number
of areas. For example, should beginning programmers learn
a language such as Java, which provides a rich library
that quickly allows a student o create graphics, GUIs,
and algorithms such as search and ordering, or should the
beginning programmer be introduced to a language such a
C and build up to these higher level concepts (even though
C has these libraries, but they’re not part of a preset starting
package and are easy for the novice to use). Similarly, should
embedded system programmers and designers be provided
a microprocessor that can only be programmed in assembly
and has no existing framework or should an Arduino be
provided that has a high-level compiler, a large community,
and existing examples available on the Internet. Both choices
have merit and we will discuss them in this paper.

The remainder of this paper is organized as follows. Sec-
tion 2 attempts to identify what an embedded system course
is and should cover. Section 3 introduces the Arduino device,
the community and resources, and the advantages of using
such a device. Section 4 describes the embedded system
course at Miami University including how the Arduino can
be used. Section 5 describes the projects created by the
students and feedback collected from them. Finally, section 6
concludes the paper.

2. What is
Course?

Grimheden and Torngren [3] asked this question in terms
of defining embedded systems and asking how it should be
taught. Their didactic approach asked a number of questions
and their general conclusion was that embedded system
courses are closer to functional and practical courses as
opposed to disciplinary and formal. In Josefsson’s study
on software engineers for industry [4] they identified the
following skills of relevance:

an Embedded System

o Business - budgeting and time management

o Software engineering/reengineering

o Teamwork

o Components reuse

o Human communication - written and spoken

e Testing and Validation

o Creating models

Project Based Learning (PBL) curricula (which is a ver-
sion of Problem Based Learning) is becoming the norm
for many engineering fields, business, and medicine [5],
[6], [7] to help deal with the above identified topics in
preparing students for the real-world. PBL pedagogy centers
learning around the activity of the student. An approach
to preparing students to become industrial designers is to
include design projects throughout the curriculum, hence
PBL curriculum. The accreditation agency, ABET, among
other entities, influenced engineering programs into includ-
ing a major capstone around 1995 to 1997 [7]. For computer
engineering curriculum, lab only courses [8], [9] slowly
evolved to include both labs and final projects. The senior
capstone has been studied to help understand how to prepare
students for this culminating experience [10], [11].

Embedded system courses fit well into PBL curriculum.
The question still remains, what are the specific topics
that should be covered in such a course. The IEEE/ACM
model computer engineering curriculum [12] has an em-
bedded system portion that consists of 11 units (7 core
and 4 electives) with a total of 59 topics and 39 learning
outcomes. The model does provide timelines, but a simple
mathematical calculation leaves approximately 50 minutes
per topic over a one-term 3 credit hour course to cover topics
as complex as “DMA transfers” and “Memory system power
consumption”. In other words, embedded systems is a very
large subject matter for a single course.

The reality is a graduate degree in embedded systems
as describe in ARTIST in 2003 [13] will, likely, cover all
the topics in IEEE/ACM model over a number of courses,
but the average computer engineer undergraduate will either
need to extend their embedded system skills when in indus-
try or they will never be involved in the field.

Other scholars have proposed course curriculum for em-
bedded systems and embedded programming [14], [15], [16],
[17], [18]. In all cases, the goal is to teach a common set
of topics and to allow the student to interact with devices in
the lab at both the software and hardware level.

An embedded system course deals with the design and
analysis of the software and hardware for a dedicated
application. In this review, we have identified that there is
no common set of topics to cover for such a course, and
there are a number of approaches to teach students a subset
of these concepts at various depth of coverage.

3. Arduino and its Benefits

“Arduino is an open-source electronics prototyping plat-
form based on flexible, easy-to-use hardware and software.

It’s intended for artists, designers, hobbyists, and anyone in-
terested in creating interactive objects or environments” [2].

The basic system consists of a microcontroller with vari-
ous peripheral interfaces that is programmed by an existing
software platform. This may sound vague, but the Arduino
can come in a number of form factors. For example, the
Arduino Uno consists of an ATmega328 [19] micropro-
cessor, a USB to serial chip, and an AC to DC power
converter. The Uno can either be built by hand or can be
bought premade from a seller such as sparkfun.com for
approximately 35 USD. The Arduino software platform is
written in Java and is based, mainly, on Processing [20] (a
language developed mainly for artists). The IDE is installed
on a machine and then can program the UNO over the USB.
The base IDE includes a number of examples for blinking
LEDs, making noises, etc. The Uno is only one type of
Arduino kit and others exist such as the Nano (for compact
use), the LilyPad (for wearable applications), and Fio (for
wireless communication).

There is not much literature relative to Arduinos being
used in computer science and computer engineering to our
knowledge with the exception of [21]. Buechley et. al. [22]
have described their experiences in building the LilyPad
Arduino and using the device in workshops for K-12 based
students. They noted how the device was successful in at-
tracting females to participate in programming and hardware
design. Also, Balogh [23] has described their Arduino based
robot platform that was used in some lectures in robotic
control and embedded systems in their curriculum. In their
work, they noted the increase in Arduino searches on the
Internet as a key factor in deciding to use the Arduino.

Taking a similar approach, Figure 1 shows the search
trends for the terms arduino, x86, hc11, mips, and nios. What
is remarkable is that Arduino searches are now roughly on
par with x86 searches as of March 2011. This just illustrates
the activity within the Arduino community.

The major benefits for using Arduino in an educational
setting that we have identified are:

« Ease of setup - plug and play

« Many examples for controlling peripherals - preloaded

in the IDE

« Many open source projects to look at

e« Works on Windows, Linux, and Mac

o Low cost hardware - build or purchase prebuilt

« Low cost software - free

« Low maintenance cost - Destroyed microprocessors can

be replaced for approximately 4 USD

o Students can prototype quickly

e« Can be programmed in an a number of languages

including C

On the other side of the argument, our two major concerns
with using such a system are:

o What are the students learning and is this low-level

enough?

arduinog == 1.00 x86 =——————— 450

0

Mips == 180 nios =070

Fig. 1
SHOWS THE GOOGLE TRENDS FOR ARDUINO RELATIVE TO OTHER EMBEDDED TERMS

o How do we evaluate/assess external and internal open
source contributions of the students design?

Open source software and hardware are relatively newer
concepts in comparison to the timeline of computer science
and computer engineering education. As to open source
projects being included in our curriculum it is now the norm
for undergraduates to be exposed to NIX operating systems
via Linux among other systems. In 2002, Wolf et. al. [24]
had one of the earlier debates on open source software and its
relation to computer science education. Pedroni et. al. [25],
recently, described their experiences with an open source
programming project as part of one of their courses. They
claimed that the students felt a greater satisfaction with the
process, but had a tough time in the activity. In general,
however, there is very little discussion on how to leverage
open source projects and yet at the same time assess students
in these projects.

In the next section, I will describe the current incarnation
of our embedded system course and how it attempts to
address embedded system content as well as our concerns.

4. Our Embedded System Course and
how the Arduino is Used

Embedded Systems at Miami University is a course in-
tended for third year Electrical and Computer engineers. The
students have taken courses on programming, digital system
design, computer architecture, and analog circuits. It is also
possible the students will have taken courses in electronics,
signals and systems, and advance programming including
operating systems, but this is not guaranteed. The embedded
course is a 4 credit hour course with 3 hours of lecture and
2 hours of lab time. The lab time is used as an open work
time where the students spend their time on a number of
projects.

The course is PBL focused and each student will prototype
3 embedded systems, will design 3 embedded systems (with
the possibility of prototyping the system), and will present
3 times.

Table 1 shows these major activities in the course. Column
1 and 2 describe the activity type and what the goal is for
the activity. Columns 3, 4, and 5 describe the group size, the
time it should take the student in weeks, and if the activity is
Arduino related. If the Arduino is “Possibly” used it means
that the students have actually built prototyped their system,
but this was not a course requirement.

For the three prototyping activities, the students have the
choice of using the Arduino as there controlling device, and
the students can choose what to build (where their proposal
must be accepted by the instructor). The lab also has PIC
microprocessors and DE2 FPGA prototyping boards (as part
of Altera’s FPGA University Program [26]). Over 90% of
the class used the Arduino for their midterm and final. The
projects, however, were more varied as the students learned
the limitation of a pin limited and computation limited device
such as the Arduino. Various projects required either an
FPGA, used the Xbox Kinect, and in some cases an interface
with a PC.

The class activities are meant to help students design and
understand embedded systems and various topics. The main
teaching topics are understanding pin limits, cost and time
for the alarm clock. In other words, how can a company
profit from making something as simple as an alarm clock
and what is needed beyond the basic electrical system. Many
students designed their alarm clock and prototyped it on
the Arduino even though this was not a requirement for
the assignment. They stated that they just wanted to see
the system work. The remote control activity is meant to
teach a system with issues in power consumption, polling
versus interrupt, and a communication protocol. Only one

Table 1
THE LIST OF ACTIVITIES FOR THE STUDENTS

Activity type Activity Goal Group Size Weeks | Arduino
Midterm Interface with another chip or device 1to2 4 Yes
Final Build a simple embedded system 1to?2 4 Yes
Project Build an embedded system 2to4 8-12 Yes
Class Activity 1 Design an alarm clock 1to2 1 Possibly
Class Activity 2 Design a remote control 1to2 1 Possibly
Class Activity 3 Design a led display 1to2 1 Possibly
Presentation 1 Present a peripheral 1to?2 2 Yes
Presentation 2 Present an embedded system 1-2 2 No
Presentation 3 Present your final 1 1 Yes

group pushed their design all the way to implementation on
an Arduino. Finally, the last class activity focuses on bus
communication protocols and real-time issues.

The presentation portion of the course has two goals. One
to prepare students for communicating in the field, and two,
to cooperatively use our numbers to quickly survey a number
of chips and embedded systems so that the class can have a
broad knowledge of the range of these devices.

The topics in embedded systems taken from the
IEEE/ACM model computer engineering curriculum [12]
that are not sufficiently covered in this approach are real-
time operating systems, embedded multiprocessors, and net-
worked embedded systems. The other topics are all covered
in varying depth through the activities and classroom dis-
cussions.

To address our two concerns raised in the previous section,
first, the depth to which the topics are covered varies from
student to student and is dependent on the projects the
students select. If a student did not choose a midterm chip
that used a bus protocol such as I2C or SPI then the
student’s depth of coverage on the topic was significantly
less compared to a student who did. However, in all the
activities there is some topic that must be investigated at a
deeper level. This is the nature of PBL and we believe the
students get a far greater benefit from their own explorations
as opposed to forced experiences.

In terms of how we evaluate projects that are connected
to open source community, the first strict rule we enforce is
that all external sources used (including fellow classmates)
must be explicitly cited. As in all academic endeavors, it is
possible that such a rule will not be followed. If a project
uses a number of external sources and simply incorporates
these sources together to form their project, we consider this
a completely valid experience and submission, and therefore
there is little incentive to copy without citation. The student
might not benefit from developing specific pieces but system
integration, the code reading and understanding, as well as
integration skills are are useful and play a major part in

real-world engineering.

5. Student Projects and Experiences

For the midterm, the students needed to find a chip of their
choosing, get the device approved through an oral proposal,
get samples of the chip, interface it with a controller, and add
a wiki entry or webpage that could be used to help others
use the chip. The idea behind this project is to make students
aware of datasheets, sensors and actuators, and to use class
resources to allow us to build a library of available chips
and chip experts. The following chips were investigated by
the students where Arduino has been highlighted if that was
the control device used.

o SIS-2 IR Receiver/Decoder - Arduino

o Texas Instruments TLV5628: Octal 8-bit Digital to
Analog Converter - Arduino

o ADXL-335 Analog Accelerometer - Arduino

« EDEI1144 Keypad Encoder - Arduino

« FAN8082 Motor Driver - Arduino

o NA 556 Dual Precision Timer - Arduino

« ADS8402 Digital Potentiometer - Arduino

o Texas Instruments TLC549cp Analog to Digital 8 bit
Conversion Chip - Arduino

e MAX6969 LED drivers and piezzo buzzer - Arduino

o LMS50 Single-Supply Centigrade Temperature Sensor -
Arduino

o« TMPO1 Temperature Sensor combined with TLC549
Analog to Digital Converter - Arduino

« MCI14021B NES controller - Arduino

« Servo Interfacing with the Arduino - Arduino

« HopeRF RMF12 (FSK Transceiver) - PIC

« XBox Kinect and the PS1080 SoC - PC and Kinect

o Texas Instruments TLC1543 (11 Channel - Analog to
Digital Converter) - FPGA

In the previous version of this course where only PIC
chips and DE2 FPGA prototyping boards were available, the
students were not successful in interfacing with any chips

except those that are on the FPGA board. We, therefore,
modified the midterm requirements in 2010 to implement
interrupt based audio interfacing with the DE2’s Wolfson
WMS8731 Audio Codec chip and a NIOS II processor.
Altera’s university program [26] provides tutorials and sam-
ple code for this among other peripherals on the DE2.
Unfortunately, the rapid change in Altera tools and the
smaller university program committee make these tutorials
only partially useful, and far worse in comparison with the
Arduino community.

For the final, each student had to deliver a working demo
of an embedded device of their creation that used at least
2 of the chips from the midterm or had some additional
complexity. These projects included many simple robots that
followed light, mapped the room, cleaned the floor, etc.
Some novel projects included a time lapsed photography
system, a Wii numchuck robotic arm, a 0-60 mph timer,
and a speed golf swing analyzer. All of these projects were
developed using the arduino as the main controller.

The major projects created for the class were varied as
well, and the following projects were created where the
Arduino impact is described:

o Automated parking garage - this is an Arduino project

« Remote control Nerfgun sentry - this is an Arduino
project

o Funny walk robot - this is an Arduino project

o Guitar chord hero - this is an Arduino project

o Nerfgun auto tracking turret - this uses a PC to do the
image processing and Arduino to control the turret

o Kinect body controlled remote cars

o LED dance floor with feedback - this is an FPGA based
project with a front-end Arduino controller

As you can see by this list, Arduino is still a popular con-
troller, but depending on the students desires (in particular
image processing and high pin input/output systems) other
control devices are used. This list of projects varies widely
compared to the projects created in 2010, which included
3 alarm systems and 1 light control project. These 2010
projects only used either PIC (light control) or DE2 boards as
the system controller, but otherwise were open projects of the
students choosing. We believe that including the Arduino has
allowed the students to create more interesting projects since
they are not limited by some of the challenges of working
with the DE2 or PIC. We should note that alarm systems
were strictly banned from the 2011 choice of projects.

6. Conclusion

In this work, we have related our experiences in teaching
embedded systems course while providing the students ac-
cess to the Arduino platform and its open source community.
We described the details of our course and showed how the
Arduino can be used to expose the students to many of the
topics normally included in an embedded system course. The

majority of activities in the course are organized around the
PBL pedagogy, and in all cases the students can choose to
use any control platform, whether it be an FPGA, Arduino,
or other microprocessor. The students have expressed high
praise for the Arduino platform and we believe that their
final projects compared to the previous years are better
and more creative partially due to the availability of the
Arduino kits. Access to the wikis generated by the students
are available at: http://www.users.muohio.edu/
jamiespa/teaching.html.

6.1 Discussion

We are pleased with the inclusion of the Arduino in
our embedded system course. We, however, identify that
the students are still missing two key components of their
embedded system education. The first, as we have identified
already, is coverage of real-time operating systems. To solve
this situation, we, personally, would like to have an addi-
tional course on robotics in our department that would allow
us to present this topic in relation to a realistic application.

The second missing topic in our current approach is
software/hardware co-design. This element was included in
the 2010 version of this course since FPGAs were used, but
these concepts are now lacking as more and more of the
students flock to the Arduino. Our belief is that this topic
is a course in itself or can be incorporated into hardware
acceleration or optimization courses. Again, the authors
hope that such a course will be added to our departments
curriculum in the future and are aware of a number of these
courses being taught at the senior/graduate level.

References

[1] J. Provost, “Why the arduino won and why it’s here to stay,” Tech.
Rep.

[2] Arduino, “Available at http://www.arduino.cc,” 2010.

[3] M. Grimheden and M. Torngren, “What is embedded systems and
how should it be taught?—results from a didactic analysis,” ACM
Trans. Embed. Comput. Syst., vol. 4, pp. 633-651, August 2005.
[Online]. Available: http://doi.acm.org/10.1145/1086519.1086528

[4] M. J.I. N. Institute, “Industriell Programvaruutveckling,” Tech. Rep.,
2003.

[5] C.L.Dym, A. M. Agogino, D. D. Frey, and L. J. Leifer, “Engineering
design thinking, teaching, and learning,” Journal of Engineering
Education, vol. 94, pp. 103-120, 2005. [Online]. Available:
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.72.1593

[6] J. Macias-Guarasa, J. Montero, R. San-Segundo, A. Araujo,
and O. Nieto-Taladriz, “A project-based learning approach to
design electronic systems curricula,” Education, IEEE Transactions
on, vol. 49, no. 3, pp. 389 -397, 2006. [Online]. Available:
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1668283

[71 A. Dutson, R. H. Todd, S. P. Magleby, and C. D. Sorensen, “A
review of literature on teaching engineering design . . .” Journal of
Engineering Education, vol. 86, pp. 17-28, 1997. [Online]. Available:
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.33.3949

[8] S. Areibi, “A first course in digital design using vhdl and
programmable logic,” in Frontiers in Education Conference, 2001.
31st Annual, vol. 1, 2001, pp. TIC —19-23. [Online]. Available:
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.16.3048

[9] K. E.Newman, J. O. Hamblen, S. Member, T. S. Hall, and S. Member,
“An introductory digital design course using a low cost autonomous
robot,” IEEE Transactions on Education, vol. 45, pp. 289-296, 2002.

[10]

[11]

[12]

(13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

C. J. Lesko, Jr., “Building a framework for the senior capstone
experience in an information computer technology program,” in
Proceedings of the 10th ACM conference on SIG-information
technology education, ser. SIGITE 09, 2009, pp. 245-251. [Online].
Available: http://doi.acm.org/10.1145/1631728.1631804

J. Goldberg, “Preparing students for capstone design [senior
design],” Engineering in Medicine and Biology Magazine, IEEE,
vol. 28, no. 6, pp. 98 —100, 2009. [Online]. Available: http:
/lieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5335729

Joint Task Force on Computer Engineering Curricula, IEEE
Computer Society, Association for Computing Machinery, “Computer
Engineering 2004: Curriculum Guidelines for Undergraduate Degree
Programs in Computer Engineering,” Tech. Rep., 2004. [Online].
Available: http://www.computer.org/portal/c/document_library/get_
file?p_l_id=2814020&folderld=3111026&name=DLFE-57612.pdf
ARTIST, “Guidelines for a graduate curriculum on embedded
software and systems,” Tech. Rep., 2003. [Online]. Available:
http://www.artist-embedded.org/docs/Publications/Education.pdf
J.-M. Vanhatupa, A. Salminen, and H.-M. Jdrvinen, “Organizing
and evaluating course on embedded programming,” in Proceedings
of the 10th Koli Calling International Conference on Computing
Education Research, ser. Koli Calling °10, 2010, pp. 112-117.
[Online]. Available: http://doi.acm.org/10.1145/1930464.1930484

W. Wolf and J. Madsen, “Embedded systems education for the
future,” Proceedings of the IEEE, vol. 88, no. 1, pp. 23 =30, Jan.
2000. [Online]. Available: http://ieeexplore.ieee.org/xpls/abs_all.jsp?
arnumber=811598&tag=1

H.-G. Gross and A. van Gemund, “The delft ms curriculum on
embedded systems,” SIGBED Rev., vol. 4, pp. 1-10, January 2007.
[Online]. Available: http://doi.acm.org/10.1145/1217809.1217811

D. Brylow and B. Ramamurthy, “Nexos: a next generation embedded
systems laboratory,” SIGBED Rev., vol. 6, pp. 7:1-7:10, January 2009.
[Online]. Available: http://doi.acm.org/10.1145/1534480.1534487
Y.-L. Huang and J.-S. Hu, “Hands-on oriented curriculum and
laboratory development for embedded system design,” SIGBED
Rev., vol. 6, pp. 3:1-3:8, January 2009. [Online]. Available:
http://doi.acm.org/10.1145/1534480.1534483

8-bit AVR Microcontroller, ATMEL, 2011. [Online]. Available:
http://www.atmel.com/dyn/resources/prod_documents/doc8161.pdf

C. Reas, B. Fry, and J. Maeda, Processing: A Programming Handbook
for Visual Designers and Artists. The MIT Press, 2007.

J. Sarik and I. Kymissis, “Lab kits using the arduino prototyping
platform,” in Frontiers in Education Conference (FIE), 2010
IEEE, 2010, pp. T3C-1 -T3C-5. [Online]. Available: http:
/lieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5673417

L. Buechley, M. Eisenberg, J. Catchen, and A. Crockett, “The lilypad
arduino: using computational textiles to investigate engagement,
aesthetics, and diversity in computer science education,” in
Proceeding of the twenty-sixth annual SIGCHI conference on Human
factors in computing systems, ser. CHI ’08, 2008, pp. 423-432.
[Online]. Available: http://doi.acm.org/10.1145/1357054.1357123

R. Balogh, “Educational robotic platform based on arduino,” in Pro-
ceedings of the 1st international conference on Robotics in Education,
RiE2010. FEI STU, Slovakia, 2010, pp. 119-122.

M. J. Wolf, K. Bowyer, D. Gotterbarn, and K. Miller, “Open source
software: intellectual challenges to the status quo,” in Proceedings
of the 33rd SIGCSE technical symposium on Computer science
education, ser. SIGCSE ’02, 2002, pp. 317-318. [Online]. Available:
http://doi.acm.org/10.1145/563340.563464

M. Pedroni, T. Bay, M. Oriol, and A. Pedroni, “Open source
projects in programming courses,” SIGCSE Bull., vol. 39, pp.
454-458, March 2007. [Online]. Available: http://doi.acm.org/10.
1145/1227504.1227465

AlteraU, “Altera University Program at
http://www.altera.com/education/univ/unv-index.html,” 2010.

