The Mythical Creature Approach - A Simulation Alternative to
Building Computer Architectures

Peter Jamieson', Darrel R. Davis?, and Brooke R. Spangler®
Miami University, Oxford, OH, 45056
!Dept. of Electrical and Computer Engineering
2Dept. of Educational Psychology
3Dept. of Psychology
Email: jamiespa, davisde, spanglbr@muohio.edu

Abstract— In this paper, we present a method to help
teach computer architecture (or computer organization) by
developing an in class system where the students, themselves,
compile high-level code and simulate the execution of their
compiled programs. We call this simulation framework Our
Realistic Computer Simulation (ORCs), and in this paper,
we will describe how this framework is developed through-
out a semester to help students understand the increasing
complexity of a computer architecture. At the end of the
course, the ORCS framework can be used by students to test
out their own optimizations, and the simulation helps them
determine if these optimizations improve the execution of a
program on their machines.

Keywords: Computer Architecture, Simulation, Teaching

1. Introduction

Computer architecture and computer organization courses
are taught to first, second, and third year students in almost
all curricula in computer science and computer engineering.
The pedagogical approach to teach these courses is to pro-
vide students a perspective on the history, the organization,
the languages, and the operation of processors and the
surrounding system. The overall goal is that students will
complete such a course with a reasonable understanding of
computation on a sequential processor occurs.

There are a variety of approaches on how to provide a
student with an understanding of how a processor works.
Of late, with the increased capacity and speed of Field-
Programmable Gate Arrays (FPGAs) and the low cost point
for buying FPGA development kits (between 100 USD and
300 USD), we are beginning to see students building a
processor in hardware [1]. This is, in our opinion, the best
approach for students to understand the detailed working of
a processor and accompanying assembly program, but there
are a number of scenarios where either the curriculum or the
institution does not allow such an activity. For example, in
our Computer Architecture course at Miami University, there
is no time set aside in the students schedule for a lab period
and the computer science students do not have a background
in digital design.

For this reason, we have developed an in class architecture
simulation environment in which the students take on the
functional roles of a computer and execute various programs.
In this paper, we describe the progression of this in class
computer simulation, which we call Our Realistic Computer
Simulation (ORCs). This progressions exposes students to
the increasing complexity of a computer architecture, allows
students to try optimizations at the compiler, architecture,
and memory hierarchy level, and provides students with the
opportunity to see how a computer works without having to
deal with many of the low-level details required to actually
build a real machine.

The remainder of this paper is organized as follows.
Section 2 provides a brief description of some approaches to
teaching computer architecture in an undergraduate setting.
Section 3 describes our approach to teaching computer
architecture and lists some of the concepts we hope the
student will understand in the course. Section 4 describes
the ORCS framework and describes the progression of the
framework from a very simple machine to a more complex
machine that includes some modern optimizations. Finally,
section 5 concludes the paper with a brief discussion of
students perception of this approach.

2. Background

Two of the most popular textbooks used to teach under-
graduate students computer architecture are Patt and Patel’s,
"Introduction to Computing Systems - from bits & gates
to C & beyond" [2] and Patterson and Hennessy’s, "Com-
puter Organization and Design - The Hardware/Software
Interface" [3]. Our opinion is that both of these books are
excellent accompanying textbooks that expose students to
computer architecture.

Patt and Patel’s book is a bottom up approach to learning
about computer architecture. The textbook starts by describ-
ing the digital components that make up the system, and then
continues with more and more complex topics in computer
architecture until the student begins to understand how a
high-level program, written in the C language [4], is mapped
to a processor and executed. Their approach is accompanied

with the LC-2 computer simulator and tools that allows
students to develop assembly programs and execute them
on this machine. The instruction set architecture (ISA) is
created for the LC-2 machine with a focus on providing the
learner with a comprehensible language, but this ISA is not
used in commercial processors.

Patterson and Hennessy’s book approaches the same topic
by providing a similar bottom approach that can be cus-
tomized for students depending on if they are hardware or
software focused. Their book is accompanied with software
for the SPIM simulator [5] which simulates the MIPS [6]
ISA. Patterson and Hennessy are also popularly known for
a quantitative approach to learning computer architecture
in their book, "Computer architecture: a quantitative ap-
proach" [7], which is more focused towards students who
will actually be working in the computer architecture field.

Many courses using either of these textbooks tend to take
the approach of lecturing the course material in class and
assigning homework to build various assembly programs that
achieve a particular task. For example, programs such as
basic computation, function calls, and pointer arithmetic are
commonly assigned to expose the students to how high-level
languages are converted to assembly programs.

For the most part, this approach has been the preferred
method of choice since, other than building a simulation of
a processor, technology did not permit the actual building of
a processor. Recently, the FPGA, which is a programmable
hardware chip, has shown significant improvements in the
number of logic gates it contains and the speed at which
these chips operate at. Companies, such as Intel, are us-
ing FPGAs to prototype, emulate, and test their upcoming
products [8]. Additionally, Altera [9] and Xilinx [10] (the
top two FPGA companies) now provide university programs
accompanied with development kits that can be bought in the
range of 100 to 300 USD. These development boards can be
used as a platform for students to build a complete computer
system. For example, Black, in 2008, published a paper [1]
that described step-by-step a set of labs to implement an
8085-based processor.

We believe that the "I built it" approach as opposed to
the "I used it" approach to teaching computer architecture is
great way for students to learn and be exposed to computer
architecture. Unfortunately, there may not be enough time
or resources in all computer architecture courses to perform
such an exercise, and for this reason we have been develop-
ing the ORCS framework as described earlier to expose the
students to building and executing programs on a machine.
Next, we describe the goals of our computer architecture
course and the constraints on the course in which our ORCS
framework is used in.

3. Computer Architecture at Miami Uni-
versity - Our Goals and Constraints

The computer architecture course at Miami University
(CSA 278/ECE 278) is offered as a 200 level course and
is cross-listed between the Computer Science and Software
Engineering Department and the Electrical & Computer
Engineering Department. Students with majors and minors
within either of these two departments are likely to take
the course. For this reason, there is a great diversity in the
students in computer architecture when it comes to their
previous experiences in software and hardware design. The
prerequisites for the computer architecture course include
introduction to programming and data structures, meaning all
the students have been exposed to programming languages

(normally JAVA programming).

The goals of the computer architecture are listed here
http://www.eas.muohio.edu/?1d=9244 and re-
quire that once the students complete the course they have
the ability to:

1) describe the operations performed by the CPU.

2) enumerate the registers in a CPU and describe their uses.

3) convert unsigned integers between the following representa-
tions: decimal, binary, octal, and hexadecimal.

4) represent signed integers using one’s and two’s complement
representations.

5) perform addition and subtraction of signed integers repre-
sented in two’s complement representation.

6) describe the salient aspects of the stored program concept.

7) describe commonly used instructions, their formats, operands
required, and encoding to opcodes.

8) describe the various memory addressing modes used by the
instructions with example usage.

9) describe the concepts and relationships between physical and
virtual memory.

10) describe the key components of a CPU and their functional-
ity.

11) explain the concept and use of microprogramming

12) describe the process of interrupt handling.

13) describe the various phases of assembly.

14) illustrate the relationship between mnemonics and machine
language translation.

15) describe the passes of an assembler and illustrate the use of
various the data structures used internally by the assembler.

16) use selected assembler directives for assembly language
programming.

17) develop assembly language programs, debug assembly pro-
grams, and trace the operation of assembly language pro-
grams.

18) describe the process of linking and loading programs.

19) describe the four stages in a traditional pipeline

20) describe the concept of CPI and quantitatively compare
performance of various architectural solutions.

21) describe the taxonomy and categorization of computers into
SISD, SIMD, MISD, and MIMD architectures.

22) describe the concept of superscalar processors

23) describe conventional bus and network connections.

This is not the complete list of all the course outcomes, but
even this reduced list is a significant number of outcomes.
We believe that by using the ORCS framework, so that the
student simulates various assembly programs, that all but

items 9, 12, 20, 21, 22, and 23 are thoroughly covered and
practiced using this approach. We believe that the items that
are not covered thoroughly in our approach, however, are
easier to describe and understand by describing them in
terms of the ORCS framework. For example, a student who
has significant experience in being part of and compiling
programs for their ORCS system can be taught the concept
of interrupt handling by illustrating how an interrupt is
similar to a function call with some additional hardware.
This computer architecture class runs in both the fall and
spring terms over a 15 week period. In the spring semester,
when we use the ORCS environment for teaching, the class
meets three times a week for fifty minutes. We dedicate the
third class in each week to exclusively having the students
simulate their respective machines, and during the other
two classes we occasionally run simulations if there is a
particular point that is best demonstrated in this fashion.

4. The ORCS framework

The ORCS framework, which stands for Our Realistic
Computer Simulation, is named based on a mythical being.
We chose this naming since it fits into our belief that for the
machines in our world that we don’t understand how they
work, we tend to believe that the machine works by magic
or some small gnome, elf, or orc is inside the machine and
performs our requested actions. A computer architecture, in
our case, is the machine of interest, and as we progress
through the course adding increasing complexity to our
computer architecture, the mythical creatures that perform
various actions within the processor are removed. In many
ways, these mythical creatures performing specific actions
within a machine is in a way an abstraction level.

COMMUNICATION

Memory Control Unit

Arithmetic Logic Unit
(Calculating Unit)

Fig. 1
SHOWS THE BASIC VON NEUMANN ARCHITECTURE WITHOUT THE
ACCUMULATOR

Figure 1 shows the first structure of a processor that we
start with for the ORCS framework. This is similar to the
basic architecture proposed by Von Neumann [11]. Basically,
we take the approach where data and the program are both
stored in the memory, and a controller moves information

around the system based on an interpretation of the program
instructions. The students will be acting as four parts of this
machine - one each for the controller, calculator, memory,
and messenger. Therefore, we divide the class into groups
of 4 students, and each group is responsible for compiling
and executing a program.

Figure 2 shows more details of the starting architecture
for the ORCS framework. In this figure, we see that the
controller shows has program counter (PC) and a four step
process for executing each step of the program. The memory
is introduced as a simple table that has an address on the
left side and associated data contained in the right cell. We
have loaded a sample C program into memory that we use
as our first program to illustrate to the students the execution
steps of a simple processor. Note that the "printf" function
call, in this program, is introduced to the students as a much
more complex library function and is simply illustrated as a
program counter jump. There are no details provided for the
calculation unit, and it is assumed that this unit can perform
any arithmetic operation at this time.

At this development stage, C programs are introduced to
the students that declare variables, include pointers, execute
loops, execute conditionals, and perform calculation on
integers and strings. The students are then responsible for
compiling each program into memory and then executing the
program in simulation mode where each of the four members
take on a role of the machine. During execution, nobody is
allowed to talk, and the students uses pieces of paper to pass
messages to each unit (via the messenger) and can record
information down on pieces of paper. To start out, there is
no assembler or machine language used, and instead, the
programs are stored as C statements.

Person 4 —
Messenger

13]j011Uu0D
— T uosiad

Fig. 3
BIRDS EYE VIEW OF THE STUDENT POSITIONING FOR THE BASIC ORCS
MACHINE

Figure 3 shows how to physically place the students for

0
0

a=1;
b=4
a=a+bh;
printf(“%d”, a);
0

olo|~v|o|lo|s]|lw]|v]r|o

11
12
13
14
15

o|lo|lo|o|o|o]o]leo|e

COMMUNICATION

| Program Counter= 98 I

1: Fetch Data at PC

2: Decode

3: Do

4:PC=PC+1

Arithmetic Unit

(Calculator)

Fig. 2
MORE DETAILS FOR THE FIRST MACHINE

simulating their machines. The three units are made to sit
facing away from one another, and the messenger person
goes around the circle delivering messages. The reason
that such a setup is needed is to discourage non-verbal
communication, which may occur when students become
aware that their programs and actions have caused an error to
happen. However, for the first few sessions when introducing
the simulation idea to the class, we allow the students to
see each other and talk while they execute a program. This
allows the group to discuss what is happening and to get an
understanding of how the machine executes a program.

The base ORCS framework is then modified as the course
progresses to include more detailed simulation aspects of an
architecture as various topics are introduced. For example,
the first topic in the course after introducing the basic
architecture is number systems and addition/subtraction in
2’s compliment. Once this topic has been introduced, all
the addresses in the memory are now labeled with a hex-
adecimal number in the form 0x00af, and all operations in
the calculator unit need to be done in terms of binary addi-
tion/subtraction. Next, we introduce registers and memories
in the course, and this results in introducing bit-widths to the
memory and adding a register file to the ORCS framework.
The students are free to choose where they would like to
add registers to their machine.

Figure 4 shows how the architecture evolves to include
a memory using binary and hexadecimal numbers and the
inclusion of registers. These updates to the simulation model
are maintained throughout the term, and the students gain
significant experience dealing with these number systems.
The reason for this is that they will constantly have to
use number systems, including two’s complement number

representation, to perform any calculations and memory
stores. After a few weeks, these number system conversions
become second nature.

The ISA can be introduced to the ORCS framework at
any point and can either be a defined ISA (such as MIPS)
or can be the instructors/students invention. Our approach is
to first allow the students to define a basic instruction set that
includes memory loads and stores, register movement, a few
calculator instructions, a jump command, and a conditional
jump. We also introduce the MIPS ISA in the sixth week
of the course and at the same time ask the students to
use this ISA in their machines. This transition point is a
good point at which the instructor can discuss the historical
debate between complex instruction set computers (CISC)
and reduced instruction set computers (RISC). Later in the
course (in the last 4 weeks) when machine optimizations
are introduced, we allow the students to use either ISA.
This results in various groups using different ISAs, and as a
class we can debate over why different ORCS machines are
executing programs faster than one another.

The complexity of the ORCS framework is increased for
approximately two thirds of the course. For the remaining
one third of the course, we introduce optimization concepts
such as pipelining, instruction level parallelism, and memory
hierarchy. At this point, we allow the students to try and
optimize their own ORCS machine so that it can execute
programs faster compared to others approaches. To achieve
some optimizations, such as pipelining, the merging of
groups is allowed so that groups provide enough execution
units to simulate/execute the computation. For example,
a three stage pipeline will require one additional student
to implement the write-back stage (and may require an

Bit 7 Bit0
0x00 00000000,
0x01 00000000,

0x02 a=1;
0x03 b=4
0x04 a=a+hb;

0x05 | printf(“%d”, a);

COMMUNICATION

Control Unit
@c = 0000010@

0x06 00000000,
0x07 00000000,
0x08 00000000,
0x09 00000000,
Ox0a 00000000,
0x0b 00000000,
0x0c 00000000,
oxod 00000000,
0x0e 00000000,
0x0f 00000000,
0x10 00000000,

ALU

<$A = ooooooo@

<$B = 0000001@

@c _ 0000001@

<$SR = 000000102)

Fig. 4
AN ORCS MACHINE WITH MEMORY DETAILS AND REGISTERS

additional student to implement a simultaneous read and

write memory).
Our time line for evolving the students machines in the
ORCS framework over the 15 weeks is the following:

o Week 1 - Base machine introduction (Figure 1)

o Week 2 - Base machine with pointers, loops, and conditionals

o Week 3 - Memory, registers, and binary add and subtract
(Figure 4)

o Week 4 - Assembler instructions and stricter communication
protocol

o« Week 5 - Exam week

o Week 6 - Competition to see who’s machine is the fastest and
why

e Week 7 - Introduce MIPS ISA

o Week 8 - Addressing modes in MIPS

e Week 9 - Introduce a cache structure and experiment (dis-

cussed below)

Week 10 - Exam week

Week 11 - Clock speed experiment (discussed below)

Week 12 - Compiler optimizations

Week 13 - Pipeline machines

Week 14 - Any optimization allowed including parallel ma-

chines - who can make the fastest machine

e Week 15 - Review week

This is one way of evolving computer architecture within
the ORCs framework, but there is plenty of flexibility in
changing this presentation order.

4.1 Some Interesting Experiments

There are a number of experiments that can both illustrate
a point and are fun for the students.

4.1.1 Clock Speed and Time per Instruction

One experiment to try once the students have become
familiar with the ORCS system is to try a clock speed

experiment. Essentially, the students are assigned anywhere
from 1 to N benchmarks, and are given a week to compile
their program and practice executing it. These benchmarks
should be created in a way such that depending on the data
different paths of execution will be taken.

On the experiment day, the instructor brings a stop watch
to class, a metronome if you have one, and a data set
that the students have not seen yet. Then have each group
execute one of the benchmarks while being timed. Ensure
that the final executed results are correct, and then allow the
students to calculate on average how long each instruction
took their machine to execute. At this point you can ask
questions about the speed of their machine and where are
the bottlenecks in the system.

Next, ask the students to break up their machine into a
set of defined actions. Finally, ask the students to tell you
what they think is the slowest task in their machine and how
long this task will take. If you can, set the metronome at
the slowest speed of the machine and ask them to simulate
a program at their so called "clock speed" seeing if they
can maintain the required cadence. Alternatively for a larger
class, set the metronome at a certain speed and see if
everyone in the class can execute at that rate. Increase the
rate of the metronome until all the machines fail. This
approach is modeled on the beep test used to determine
a set of athletes VO2 max (http://en.wikipedia.
org/wiki/Multi-stage_fitness_test).

4.1.2 Cache Replacement Policies

If your course introduces memory hierarchy and caches,
then the ORCS framework has the potential for students to

Table 1
RESULTS FROM THE STUDENT SURVEY ABOUT THE ORCS FRAMEWORK

Question \ Mean Standard Deviation
1. ORCS helps me understand how C programs compile to Assembly 243 1.07
2. ORCS helps me understand how a processor executes a program 2.32 1.17
3. ORCS helps me understand all the main pieces of a computer architecture 2.57 0.97
4. I would rather not have use ORCS and replace them with more lecture time | 2.48 1.14
5. I would rather write more assembly programs 2.23 1.21

learn about cache replacement policies. Again, develop 1, 2
or 3 benchmark programs that touch the memory in various
patterns. Briefly describe the concepts of cache replacement
policies. Allow the students to work for a few days on
implementing and researching various cache replacement
policies.

Within the ORCS framework include a student to simulate
the memory and a student to simulate a cache with approx-
imately four cache spots. On the experiment day, introduce
some other benchmark programs with similar and different
memory access patterns. Have the students execute these
programs using their best cache replacement policy and have
them calculate cache misses and cache hits.

4.2 Student’s Experiences

To get a feel for the student’s perspective of this ap-
proach to teaching architecture we surveyed the students
in our computer architecture class with IRB approval. We
understand that the student’s responses to a survey is more
of a general feeling towards the approach as opposed to an
comparative opinion between different methods of learning
computer architecture, and therefore, the scientific value of
these survey results is very low. However, it is interesting
to see how the students respond to an activity that is very
foreign to their learning experience.

For this survey, the students were given the option at a
midterm evaluation of the course to answer 5 additional
questions related to the ORCS aspect of the course on a
scale of 0 to 4 where 4 is strongly agree and O is strongly
disagree. At this point the students have participated in 6
ORCS simulation sessions. The evaluations are anonymous
and have no impact on the students assessment in the course.

Table 1 shows the results of this survey and the 5 questions
that were asked. A total 12 students responded to this
part of the survey out of a total of 36 students (one third
participation). The survey results show that the students
don’t have a clear perspective whether the ORCS simulation
activities impact their learning of the material. These results
are not unexpected as we don’t believe the students have
attempted a significant amount of meta thinking as to how
this approach impacts their learning.

5. Conclusion

In this work, we have introduced our ORCS framework
that allows students in a computer architecture course to
experience building a processor and execute programs by
the students themselves simulating various programs. This
approach provides the students with significant exposure to,
practice of, and experimentation with the many concepts and
ideas introduced in an undergraduate computer architecture
course.

We surveyed traditional approaches to teaching computer
engineering pointing out that it is now possible for students
to build a processor on an FPGA. The ORCS framework is
an in class alternative to a processor building approach with
the benefit that the students do not have to deal with many
of the low-level details needed to be learned and understood
to build such a system. We do not claim that our method
is better than any other existing pedagogical approach, but
offers teachers an alternative to expose students to computer
architecture.

References

[1] M. Black, “Building a computer from scratch: a hardware lab
sequence for computer science students,” J. Comput. Small Coll.,
vol. 24, no. 3, pp. 32-38, 2009.

[2] Y. N. Patt and S. J. Patel, Introduction to Computing Systems: From
Bits & Gates to C & Beyond. New York, NY, USA: McGraw-Hill,
Inc., 2004.

[3] D. Patterson and J. Hennessy, Computer Organization and Design:
The Hardware/software Interface. Morgan Kaufmann, 2005.

[4] B. W. Kernighan and D. M. Ritchie, The C programming language.
Prentice-Hall, 1978.

[5] J. Larus, “SPIM S20: A MIPS R2000 Simulatora,” Tech. Rep., 1990.

[6] J. Hennessy, N. Jouppi, S. Przybylski, C. Rowen, T. Gross, F. Baskett,
and J. Gill, “Mips: A microprocessor architecture,” in MICRO 15:
Proceedings of the 15th annual workshop on Microprogramming.
Piscataway, NJ, USA: IEEE Press, 1982, pp. 17-22.

[7] J.L.Hennessy and D. A. Patterson, Computer architecture (2nd ed.): a
quantitative approach. San Francisco, CA, USA: Morgan Kaufmann
Publishers Inc., 1996.

[8] P. H. Wang, J. D. Collins, C. T. Weaver, B. Kuttanna, S. Salamian,
G. N. Chinya, E. Schuchman, O. Schilling, T. Doil, S. Steibl,
and H. Wang, “Intel®atom™ processor core made fpga-
synthesizable,” in FPGA ’09: Proceeding of the ACM/SIGDA inter-
national symposium on Field programmable gate arrays, 2009, pp.
209-218.

[9] “Altera University Program at http://www.altera.com/education/univ/
unv-index.html,” 2010.

[10] “Xilinx University Program at http://www.xilinx.com/univ/,” 2010.
[11] J. v. Neumann, “First draft of a report on the edvac,” Tech. Rep.,
1945.

