Persistent CAD for in-the-field Power Optimization

Peter Jamieson
Dept. of Electrical and Computer Engineering
Miami University
Address: Oxford, OH, 45056
Email: jamiespa@muohio.edu

Abstract—A major focus within the Integrated Chip (IC)
industry is reducing power consumption of devices. In this paper,
we explore the idea of persistent CAD algorithms that constantly
improve the power consumption of consumer devices that use
FPGAs. The idea is that the field-programmability of an FPGA
allows updates to be deployed in the field, and as CAD algorithms
find optimizations for a design, these optimizations can be
deployed into the field. To explore this idea, we have created
a persistent placement algorithm for FPGAs using a genetic
algorithm. We describe the design of this genetic algorithm,
and then use it in an experiment to show the impact on
power consumption. Our results for one of the larger MCNC
benchmarks, clma, shows that over a 60 minute period better
placement solutions are found, but the rate at which these
solutions are found decreases quickly.

I. INTRODUCTION

Power consumption of electronic devices impacts our en-
vironment as we search for more energy resources and im-
pacts the battery longevity of consumer devices. Traditional
Computer Aided Design (CAD) for Application-Specific Inte-
grated Circuits (ASICs) and Field-Programmable Gate Arrays
(FPGAs) focuses on optimizing speed, area consumption, and
power consumption metrics as best as possible in a single tool
pass from design to implementation. During this pass a high-
level design (possibly an Hardware Description Languages
(HDLs) design) is mapped through a set of CAD stages that
converts this design into a technological realizable format that
can be manufactured or programmed onto a target technology.

These CAD stages, such as placement and routing, use
algorithms that attempt to optimize the design for the met-
rics described earlier, and these problems are NP-complete
problems [1]. Various heuristics have been developed to find
reasonable solutions to these problems in a fixed amount
of time, where reasonable is defined based on designer’s
perspective. For example, ASIC designers might be able to
work with a 1 week run-time for the CAD flow as opposed
to FPGA designers expect a 1 hour to a maximum of one
day for their CAD process to complete. The reality is that the
solutions are not optimal as there is only so much time to
explore the optimization problems search space.

An interesting characteristic about an FPGA is that it is
possible to reprogram the device in the field, and therefore,
it is conceivable that the CAD flow used to map a design to
an FPGA could potentially continuously run and find better
solutions in the search space. As more optimal solutions
are found, these solutions could be updated to the FPGAs

resulting in improved device performance. The key benefit
of the persistent CAD algorithm is that over time the power
consumption of consumer devices can decrease. For example,
imagine your cell-phone that contains an FPGA, actually, has
increased battery lifetime the longer you own it.

The focus of this work is to study how a genetic algorithm
for persistent placement impacts the power consumption of a
design mapped to an FPGA. We investigate how to build a
persistent placement algorithm within the VPR 5.0 [2] frame-
work that includes power estimation [3]. Using this algorithm
we run the algorithm on a benchmark observing how power
consumption is improved. Our results show that persistent
CAD for placement does improve the power consumption of
an FPGA, but the rate of improvements slows as expected.

The remainder of this paper is organized as follows. Sec-
tion II describes placement algorithms for FPGAs including
genetic algorithms. Section III describes the design of our ge-
netic algorithm for persistent placement. Section IV describes
our experimental setup and shows results of our experiment
for one MCNC benchmark. Finally, Section V concludes this
work.

II. BACKGROUND

A series of CAD flow stages convert an HDL design to a
programmable bit-stream that can be uploaded to the FPGA
to implement the design. The focus of this work is on the
placement stage, which we review below.

A. Details of FPGA Placement

The goal of the placement problem for FPGAs is to place the
digital logic, representing the digital design, onto the array of
FPGA clusters such that the critical path (the longest path from
either a primary input to a primary output, a primary input to
flip-flop, flip-flop to flip-flop, or flip-flop to primary output),
the power consumption, and the wire-length are minimized.
This problem has been shown to be NP-complete to solve
optimally, and a number of popular heuristic based algorithms
have been used for FPGA placement including simulated
annealing ([1], [4]), which is the algorithm used in VPR 5.0,
min-cut ([5]), analytic ([6], [7]), which includes force-directed
placers.

The simulated annealing (SA) algorithm, when used in
the FPGA domain for placement, attempts to minimize the
above circuit metrics based on the process of cooling metals.
A cooling schedule controls the weighting of a probability

function. This function determines if randomly selected swaps
between logic mapped on an FPGA are accepted or not. Each
random swap of logic will either improve or degrade the
critical path, and initially, all swaps are accepted regardless if
they improve the critical path or not. As the temperature cools,
only swaps that improve the optimization metrics are accepted.
In this way, the early phases of the cooling schedule is used
to allow hill climbing that will avoid early local minimums in
this optimization problem.

The two most relevant aspects of the annealer as a placement
algorithm for FPGAs are the scheduling of the cooling and the
cost function that evaluates a current solution. The scheduling
of the annealer determines if a random swap of logic is
accepted and determines the maximum Manhattan distance of
the swap. As time progresses, swaps that do not improve the
cost function are not accepted, and the Manhattan distance
between the potential swaps is reduced. From this works
perspective, the distance of a random swap is relevant and
is based on the term Ry;,;;. For example, given a 5 by 5
FPGA, Rjimi+ can have a maximum value of 5 meaning that
digital logic located at the x coordinate 0 and y coordinate O
could be swapped with another piece of digital logic located at
x coordinate 4 and y coordinate 4. As Rj;m: is reduced then
the distance of swaps is smaller representing the stabilizing of
the placement algorithm.

The second aspect of the annealer is the cost function
used to steer the optimization algorithm as various random
swaps are attempted. VPR 5.0 cost function consists of two
components defined in [4]. The first part of the cost function
is the sum of the bounding box dimensions of all nets. Given
N nets, bb, (i) and bb, (i) are the x and y dimensions of the
bounding box for each net (i), and ¢(i) is a scaling factor for
better wire-length estimates. The first component of the cost
function is defined as:

N
WiringCost = Z q(2) - [bby (7) + bby (7))
i—1

6]

Component two is used to evaluate timing costs of a placement
where,

Delay(i, j)-Criticality(i, j) CE)

2
and CE is a constant, Delay(i,j) is the delay of the connection
from source i to sink j, and Criticality(i,j) is a measure of how
close the given i, j path is close to the critical path.

Lamoureux et. al. [8] extended this cost function to be
power aware. They added a new term:

>

Vi,jEcircuit

TimingCost =

N
PowerCost = Z q(i) - [bbg (i) + bby (7)) - Activity(i) (3)

i=1

where Activity(i) is the switching activity on a particular
net, and by reducing this component, the power consumed
over long and power hungry programmable routing wires is

reduced. The placement cost function with all components is:

Cost — \ TimingCost
ost = \-
PreviousTimingCost
WiringCost
1-XA)-11=7)-
() {(”) PreviousWiringCost @)

PowerCost
7 PreviousPowerCost

where the v factor is used to control how strong or weak the
power optimization is and A parameter is used to weight the
importance of each of criticality and wire length. This cost
function is also the one used in our genetic algorithm, which
we will discuss later in this work.

B. Genetic algorithms and placement

Genetic algorithms (GAs) use the “survival of the fittest”
idea to find solutions for an optimization problem. The basic
idea is that a population of different solutions is created
to solve a problem, and the best individuals/solutions are
duplicated and modified, through operations such as cross-
breeding and mutation, which create the next new population
of solutions.

In addition to the three types of placement algorithms
described earlier, GAs have been used for FPGA placement.
Venkatraman ef. al. [9] implemented one of the first GA
placers in VPR 4.3 (the predecessor to VPR 5.0). In their
work, each piece of the digital logic is considered a gene, and
the 2-D location of each of the items is combined to create
an individuals genome. A population of these individuals is
created and they are evaluated based on a fitness function
similar to the cost function described in the previous section.
Within the population, the fittest individuals are kept and
mutated to create the next generation. Their results show that
this algorithm improves the critical path compared to VPR’s
SA algorithm for ten benchmarks.

More recently, Meng et. al. [10] have created an algo-
rithm that combines both GA and SA algorithms for FPGA
placement. Their approach claims that the GA aspect of the
algorithm is used to escape local minimums (as an alternative
to hill climbing) and the SA is used to quickly converge on
good solutions. Their results show similar costs compared to
VPR 4.3’s SA approach with similar run-times.

III. GENETIC ALGORITHM FOR PERSISTENT PLACEMENT

For our persistent placement algorithm, we chose to im-
plement a GA since the idea of continuously creating new
populations is much more applicable to persistent CAD than
modifying SA timing schedule. In this section, we describe
how we implement our GA for persistent placement.

We built our GA placer in VPR 5.0 that supports power
estimation [3]. This allows us to use the cost function as shown
in equation (4) to evaluate the fitness of our population.

Similar to other GA implementations for FPGA placement,
we have also chosen to create a genome based on the x and y
coordinates of each logic piece of the design. In our approach,
we create new generations by mutating the fittest individuals

TABLE I
CONFIGURABLE PARAMETERS FOR THE GA

Parameter \ Description of parameter

The percentage of the fittest individuals (parents)
The percentage of children
The percentage of randomly created individuals
The number of individuals in the population
The percentage of genes to randomly mutate

A parameter to weight timing optimization importance
A parameter to weight power optimization importance

L > |3 Q2L &

in the current population. Each generations population consists
of w% of the fittest individuals from the previous generation,
which we call the parents, «% of the population is mutated
individuals from the parents, and 3% of the population are
randomly generated new individuals, where w+a+3 = 100%.
The population size of each generation is defined by parameter
o and the number of mutations for the mutated children is
defined by 7% where the total number of mutations is a
percentage of the number of genes in a genome (this is the
same as the number of logic elements in the netlist). Table I
shows all the parameters associated with our GA including the
parameters in the cost function.

A GA follows a set of steps through the evolutionary pro-
cess, and in our algorithm, we use the term Ry;,+ to control
the distance of random swaps in our mutation operation.
Similar to the SA scheduling algorithm, Ry, starts as the
maximum size of one dimension of the FPGA and decreases to
1, but in our persistent algorithm, once Rj;,,;+ = 1 for the next
generation we set Rj;,;; to the maximum size of the FPGA.
In this way, the GA algorithm tries both fine grain changes
and course grain changes over time in a controlled fashion.

IV. EXPERIMENTAL RESULTS FOR PERSISTENT
PLACEMENT FOR FPGAS

To evaluate the idea of a persistent placement algorithm and
the quality of our algorithm we execute the GA placement for
different values of + and A that control the cost functions
focus on timing cost, wiring cost, and power consumption
cost. The persistent GA placement algorithm, described in the
previous section, is implemented within VPR 5.0 software,
which includes a power estimation framework. We run this
algorithm for one MCNC benchmark and sweep the v and A
parameters. In this section, we will describe more details of
the experimental setup, and then report our results.

A. Experimental Setup

For our experimental setup, there are a number of details
that we must describe, and these include:

1) The parameters v and A which control the weighting of
the placement cost function

2) The architectural parameters describing the FPGA

3) The parameters in Table I describing our Genetic Algo-
rithm

4) The system and conditions on which the algorithm is
executed

The reality is that there are a huge number of parameters
that could be explored in our experiments. We have chosen
to only vary v and A parameters so that we can explore the
idea of persistent CAD and not so much the quality of our
algorithm and the impact of the FPGA architecture. In future
work, we hope to explore the quality of a persistent CAD
algorithm in more detail.

TABLE I
THE FPGA ARCHITECTURAL PARAMETERS

Parameter | N K

| 10 5

Fein Feout Fy

Value 0.18 0.1 3

In terms of architectural parameters, we invite the reader to
read [4] that describes the FPGA architectural meaning of each
parameter. For the sake of space and since there is not a huge
need for the reader to understand these parameters relative to
this work, we simply present our architectural parameters in
Table II.

TABLE III
THE GA ALGORITHMIC PARAMETERS

Parameter | w o 8 o T

| 20% 50% 30% 100 10%

Value

Table III shows the values selected for the GA. These
parameters have not been tuned by any special means other
than basic intuition and a few trial and error experiments.
Again, we are not so much exploring the quality of a persistent
algorithm in this work, and instead, we are focusing on the
basic concept.

Our experiments are run for one of the MCNC benchmarks,
clma. This benchmark is optimized via our GA persistent
placement algorithm for different values of the + and A
parameters for weighting the cost function. The values of
~v and A\ parameters are 0.0, 0.2, 0.5, 0.8 and 1.0. For our
experiments, we run all combinations of these. For each unique
parameter pairing of v and A, we run a benchmark for 60
minutes, and at each minute of execution, the current best
placement (or fittest individual in the population) is output in a
placement file. This placement file is post-routed and evaluated
in terms of power and speed.

These algorithms are run on a Intel Core Duo E8400 CPU
running at 3.00 GHz with 2GB of RAM in Cygwin for
Windows XP. The E8400 is a 65 Watt machine that based on
Sysmark Benchmarks [11] consumes on average 100.5 Watt-
hours [12].

B. General Observations of Power and Speed Improvements
over 60 minutes

Based on the experimental setup, every minute we gather
the best placements for clma over a 60 minutes for different
~v and A parameters. The hypothesis is that we should see a
power consumption improvement over time (depending on the
cost function parameters) as the algorithm has more time to

1.40€-07

1.30€-07

1.20€-07

1.10€-07

1.00€-07

Energy (joules)

9.00E-08

8.00E-08

7.00E-08

Energy Consumption - CLMA - Lambda = 0.50

Lambda = 0.50 Gamma = 0.00
~#—Lambda = 0.50 Gamma = 0.20
=>=Lambda = 0.50 Gamma = 0.50
==Lambda = 0.50 Gamma = 0.80

A Lambda = 0.50 Gamma = 1.00
}\&‘ =y e’ ')‘z

6.00E-08

13 5 7 9 11 13 15 17 19 21 23 25 _27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59
Time in Minumtes

Fig. 1. Energy consumption results over 60 minutes for Lambda = 0.50 and Gamma changing

move around in the search space. Our results showed that the
best value for A is 0.5 and ~ is 0.80, which is the same as
those found in [8] for SA. For this reason, we only present
results based on these parameter values.

The power results over time, as shown in Figure 1, shows
that we do see incremental improvements in the overall energy
consumption in a decay like function. We can see that over
time the energy results are improving. Initially, for the first
10 minutes we see a rapid improvement of the power results,
with some noise, and then from the 10th minute on we see
a much slower energy improvement. We also see the similar
improvement in speed, but do not show these results due to
space limitations.

The reason for incremental improvement that tappers off
is the nature of our algorithm implementation where we are,
likely, stuck in a local minimum due to a hereditary path.
Even though our GA algorithm introduces a percentage of
new individuals (based on the [factor) as time progresses
the fittest individuals are from the same lineage and are
exploring a local minimum that is dominant with respect to the
new random individuals. In future persistent CAD algorithms,
more thought needs to be put into exploring more possible
candidates, and different lineages and crossbreeding operators
need to be considered.

V. CONCLUSION

In this work, we introduced the idea of persistent CAD
optimizations and showed how in the FPGA domain this
idea might be used to reduce power consumption of devices
deployed in the field (though we have not discussed the
engineering details of this in the filed updating). To experiment
with this idea, we created a GA for placement that persis-
tently looks for power consumption and speed optimizations.
We built this algorithm within the VPR 5.0 framework and
described the algorithmic parameters that control our imple-
mented algorithm.

To study our algorithm that persistently seeks to improve
a design’s power consumption, we ran a GA over a 60

minute period (under a number of conditions) to observe how
the sustained time in the search space improves the power
consumption and speed of one MCNC benchmark. Our results
show that, initially, there are significant gains that over time
decreases. We believe that this is partially due to our algorithm
getting stuck in a local minimum, with a small probability of
escaping, and future work might focus on a better approach
to dealing with this problem.

REFERENCES

[1]1 S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimization by
Simulated Annealing,” Science, vol. 220, no. 4598, pp. 671-680, May
1983.

[2] J. Luu, I. Kuon, P. Jamieson, T. Campbell, A. Ye, W. M. Fang, and
J. Rose, “VPR 5.0: FPGA CAD and Architecture xploration Tools
with Single-Driver Routing, Heterogeneity and Process Scaling,” in
ACM/SIGDA International Symposium on FPGAs, Feb 2009.

[3] P. Jamieson, W. Luk, S. J. Wilton, and G. A. Constantinides, “An
energy and power consumption analysis of fpga routing architectures,”
in International Conference on Field-Programmable Technology, 2009,
pp. 324-327.

[4] V. Betz, J. Rose, and A. Marquardt, Architecture and CAD for Deep-
Submicron FPGAs. Kluwer Academic Publishers, 1999.

[51 A. E. Dunlop and B. W. Kernighan, “A Procedure for Placement of
Standard-Cell VLSI Circuits,” IEEE Transactions on Computer-Aided
Design, vol. 4, no. 1, pp. 92-98, Jan. 1985.

[6] B. M. Riess and G. G. Ettelt, “Speed: Fast and Efficient Timing Driven
Placement,” in IEEE International Symposium on Circuits, 1995, pp.
377-380.

[71 K. Vorwerk, A. Kennings, and A. Vannelli, “Engineering details of a
stable force-directed placer,” in ICCAD ’04: Proceedings of the 2004
IEEE/ACM International conference on Computer-aided design, 2004,
pp- 573-580.

[8] J. Lamoureux and S. J. E. Wilton, “On the interaction between power-
aware fpga cad algorithms,” in ICCAD ’03: Proceedings of the 2003
IEEE/ACM international conference on Computer-aided design, 2003,
p. 701.

[9]1 R. Venkatraman and L. M. Patnaik, “An evolutionary approach to timing

driven fpga placement,” in GLSVLSI ’00: Proceedings of the 10th Great

Lakes symposium on VLSI, 2000, pp. 81-85.

Y. Meng, A. E. A. Almaini, and W. Pengjun, “Fpga placement opti-

mization by two-step unified genetic algorithm and simulated annealing

algorithm,” Journal of Electronics (China), vol. 23, no. 4, pp. 632-636,

2007.

Bapco, “http://www.bapco.com/products/sysmark2007preview/,” 2009.

tom’s hardware, “http://www.tomshardware.com/reviews/

wolfdale-steroids, 1777-16.html,” 2010.

[10]

(11]
[12]

