
Harnessing Human Computation Cycles for the FPGA Placement Problem

L. Terry, V. Roitch, S. Tufail, K. Singh, O. Taraq, W. Luk, and P. Jamieson
Department of Computing, Imperial College, London, United Kingdom

Abstract

Harnessing human computation is an approach to find
problem solutions. In this paper, we investigate harnessing
this human computation for a Field Programmable Gate
Array (FPGA) placement problem. We create a game
called Plummings. In this game, a player attempts to
reduce the critical path of a digital design mapped to
an FPGA by swapping clusters on the array, but the
problem details are abstracted away, and instead, the game
simply presents a challenging problem where paths must
be minimised to save the game characters - the Plummings.
Once players have played a level, the placement is can be
evaluated in VPR. Our results show that 4 human players
over a set of 5 benchmarks can create placement solutions
with comparable critical paths compared to VPR’s solu-
tions. This is not always the case, and we suggest some
reasons and further approaches to improving our results.

Keywords: FPGA, Placement, Harnessing Human Computation

1. Introduction

As the video game market continues to dominate the
entertainment market over previous leaders such as movies
and music, individuals are spending their free time playing
video games of all sorts. This relaxation time is spent
solving challenges designed into a game world for the
players, and the human, even though in a relaxation state,
is performing computation. This computation is wasted
in terms of what society might consider useful work. If,
however, we could present challenging problems that a
player considers fun to solve, but these problems and
solutions can be applied to real-world problems, then we
would have a win-win situation. For any optimisation
problem, extending the time dedicated to searching the
solution space potentially improves results. In this work,
we focus on harnessing what would be wasted human
computation time for searching this space.

This concept of harnessing human computation has
been explored in games such as Foldit [1] and Google’s
ESP game [2]. In this paper, we apply this concept of
harnessing human computation to attempt to improve the
FPGA placement results for a digital design. In contrast
to the previous experiments, this work begins to pose the
question if harnessed human computation can be useful in
the domain of classical optimisation problems.

The FPGA placement problem consists of determining
how to place a set of logic clusters on an array of Field
Programmable Gate Array (FPGA) tiles such that the
critical path of the circuit is minimised. A common FPGA
exploration tool, VPR 5.0 [3], uses a simulated annealing
algorithm to place circuits on FPGAs. In this work, we
use VPR 5.0 to generate placement files that are then
loaded into our video game environment. The game, called
Plummings, allows a player to freely swap clusters on the
array; however, details of cluster swapping and the critical
path are abstracted away from the player in the form of
a game. Each swap will either improve or degrade the
resulting speed of the circuit based on the critical path
length. This is reflected in a score, and players attempt to
improve the critical path.

Plummings the game does not present the technical as-
pects of FPGA placement to the user and the complexities
of digital designs. Instead, the game shows your score as
the current critical path improved relative to the initial
critical pressure in the form of an air pressure score. Nodes
on this path can be moved to reduce the path and save the
beings in the game world, Plumms, by increasing the air
pressure and providing them with adequate oxygen. This
abstraction harnesses the human computation by presenting
the problem as a fun and challenging game as opposed to
work. Additionally, we have created a competitive multi-
player environment that pushes players to improve the
placement even further in the disguise of the challenge
to beat another human opponent.

Our preliminary results show that for 5 existing bench-
marks and 4 game players the final placed and routed
designs were on par, and in one case better, than the critical
paths generated by 5 random seed placements by the sim-
ulated annealer in the VPR tool. This suggests that with an



increase in the number of players and improvements to our
critical path estimation tool this approach may be a feasible
application of recycling wasted human computation.

The remainder of this paper is organised as follows.
Section 2 describes previous work in the field of harnessing
human computation, the basic structure of an FPGA rele-
vant to the placement problem, and details of the placement
problem. Section 3 describes the game Plummings and
how we abstract the placement problem to a game form
including the estimation of critical path. Section 4 shows
our results of placement solutions based on the playing of
the game compared to VPR’s results. Finally, Section 5
concludes the paper and discusses some future work.

2. Background

In this Section, we review previous work in the field
of harnessing human computation. In our case, human
computation is harnessed to solve the FPGA placement
problem, and for this reason, we will introduce aspects of
FPGA architecture and a CAD flow for these devices.

2.1 Harnessing Human Computation

Humans and computers perform computation where
both are limited in what they can achieve due to a number
of factors including time. Harnessing human computation
aims to utilise so called "wasted cycles" (where a person
is not trying to do useful work) to perform useful compu-
tational tasks.

Existing applications that harness human computation
to solve different tasks include projects such as protein
folding (FoldIt [1]), picture identification (Google Image
Labeler [2]) and recommendation (Amazon and Apple
Genius [4]), which we briefly review here.

FoldIt [1] is a game developed to allow players to
interact with complex proteins, attempting to solve one
of the problems facing biological science - how to predict
protein structure. FoldIt presents 3D abstraction of proteins
and simplifies the chemistry behind protein folding by
making the problem into a game. It is clear to the user that
they are folding proteins as no abstraction is attempted, but
users are rewarded for their efforts by a driving goal to get
to the top of the leader board. FoldIt develops solutions that
are better than those produced by machines by encouraging
competition between the 50,000+ players of the game and
has been successful.

An ongoing problem in the realm of computer vision is
identifying and labelling objects in an image. This problem
is simple for humans to solve, but challenging for machines
based on current technology advances. The Google Image
Labeler (based on the ESP game [2]) tackles this image
tagging problem by turning a menial task, for humans, into

a game. The game is based on cooperative play between
two players. Each player types what they believe describes
the presented image and the aim of the game is for the two
players to agree on the description by only communicating
through the game interface. Players are driven to score well
by matching words and at the same time help solve the
tagging problem. The results obtained from the original
version of the game show that 5,000 players could label
every image in Google image search in approximately two
months. This application of human computation has been
so successful that it’s been developed further into locating
objects in images in a project called Peekaboom [5].

The designers of the image tagging game showed that
it is possible to make people want to play games that
have real-world applications. Furthermore this is a fast and
cheap way of producing solutions to difficult problems,
Internet gaming sites have millions of unique users every
month [6], which is synonymous to having millions of
computers.

Another popular application of harnessing human cycles
has been incorporated in CAPTCHAs - Completely Auto-
mated Public Turing test to tell Computers and Humans
Apart. CAPTCHAs are popularly used on web forms
where a user sees an image of text and symbols and has
to type in the sequence to prove they are a human as
opposed to a bot. Ahn et. al. leverage this text identification
process to use humans to identify archived printed text into
computer format [7].

Amazon recommendations and the Apple iTunes Genius
service silently collect information about people’s likes and
dislikes. In general, people who like the same song/product
will have similar tastes. This is human computation in
a more subtle light where the people browsing Amazon
or listening to iTunes are grouping together similar items
(whether they are related products or of similar styles) they
give semantic meaning to products, which is very difficult
for a computer to achieve.

The goal of this work is to explore these concepts of
harnessing human computation and apply it to the FPGA
placement problem as described below.

2.2 FPGA Architecture

FPGAs are programmable chips that can implement any
digital design. Figure 1 shows the basic structure of an
island style FPGA consisting of an array of logic blocks
and I/O cells that are interconnected using programmable
routing [8]. The programmable routing consists of wire
segments that are connected to logic blocks and other wire
segments via programmable switches at switch blocks and
connection blocks. The logic blocks are also called clusters
where these clusters commonly consist of a combination
of Look-up Tables (LUTs), flip-flops, and internal pro-



Programmable 

Switch Block

Logic 

Block 

I/O 

pin
Connection 

Block

Fig. 1. An FPGA consisting of logic blocks, I/O
pads, and programmable routing.

Table 1. FPGA Architectural Parameters Used
in Paper

Parameter W N K Fcin Fcout Fs L

Value 180 10 4 0.17 0.1 3 4

grammable routing. From the placement problem perspec-
tive, the most important architectural feature is the cluster,
and the reader needs to understand that the FPGA consists
of an array of these clusters that a design will then be
mapped to.

Digital designs are mapped to these devices using a
CAD flow similar to the one shown in Figure 2. In this
figure a high-level design, normally written in a Hardware
Description Language such as VHDL [9] or Verilog [10], is
converted first into logic gates, then LUTs, and then clus-
ters, and finally, these clusters are placed and connections
between them are routed.

For the soft logic fabric we use to illustrate the concepts
in this paper, we will select a single set of parameters
chosen to be close to the typical parameters of a modern
FPGA, including the use of direct-drive (also known as
uni-directional) routing [11]. The parameters we use in
this paper are given in Table 1 and for more details about
these parameters see [8].

The focus of this work is on the Placement phase of
the CAD flow, which we describe in more detail.

Routing

Packing

- Register packing

- Clustering

Technology-dependent 

mapping

Technology-Independent 

Logic Optimization

Front End Synthesis

INPUT - HDL Design

Placement

OUTPUT - Bit-stream

Fig. 2. A graphical representation of CAD flow for
FPGA design.

2.3 FPGA Placement Problem and Simu-
lated Annealing

The goal of the placement problem for FPGAs is to
place the clusters, representing the digital design, onto the
array of FPGA clusters such that the critical path (the
longest path from either a primary input to a primary
output, a primary input to flip-flop, flip-flop to flip-flop,
or flip-flop to primary output) is minimised. This problem
has been shown to be NP-complete to solve optimally, and
a number of popular algorithms have been used including
the focus of this paper, simulated annealing [12].

The simulated annealing algorithm, when used in the
FPGA domain for placement, attempts to minimize the
critical path based on the process of cooling metals. A
cooling schedule controls the weighting of a probability
function. This function determines if randomly selected
swaps between clusters on the FPGA are accepted or
not. Each random swap of clusters will either improve
or degrade the critical path, and initially, all swaps are
accepted regardless if they improve the critical path or
not. As the temperature cools, only swaps that improve
the critical path are accepted. In this way, the early phases
of the cooling schedule is used to allow hill climbing that
will, hopefully, avoid local minimums in this optimisation
problem.

VPR 5.0 [3] is a tool used for FPGA architecture
exploration, and this tool implements simulated annealing
as the placement algorithm. A netlist of clusters is inputted
to the tool. This netlist is read in and placed and routed



onto an FPGA architecture, which is described by a set
of architectural parameters. These parameters describe
the size of the clusters, LUTs, and the connectivity of
the programmable routing. VPR outputs the placement
coordinates of the design’s clusters, the routing resources
used to connect the clusters in the programmable routing,
and the area and speed of final mapped design to the
described FPGA architecture.

In this work, we use the VPR 5.0 tool to both create
initial placements for our game abstraction of the place-
ment problem and then to evaluate our human placed
results compared to results generated within the VPR
framework. The results generated by VPR depend on an
initial placement of clusters, which is randomly generated.
This randomness is controlled by a random seed that is
also inputted into the tool.

3. System Description

In terms of mapping the placement problem to a game,
there are two parts to consider. First, calculating an esti-
mation of the critical paths between a network of clusters
and programmable paths through the FPGA to represent
this as a score, and second, modifying the placement to
reduce the critical path and near critical paths via player
actions. As such we have developed two separate elements
to our game, Plummings. The calculation of critical paths
through the FPGA is performed in an API that abstracts
this process so that it can be modified without changing
the game.

In this Section, we will describe the game, show how
the game is an abstraction of the placement problem for
FPGAs, and describe some details of our critical path
estimation.

3.1 The Game Environment

Our particular game is set in the Plummings world as
can be partially seen in Figure 3. This world is inhabited
by characters known as Plumms. Each Plumming colony
is a complex network of pipes joined by cogs on a two
dimensional grid. Each colony (game level) has a limited
supply of oxygen coming into the pipes, and this is not
enough for all the Plumms to survive. A player attempts
to minimize the network of pipes to increase the pressure,
and therefore, supply enough Oxygen to the Plumms.

In terms of players achieving this, the Plummings board
consists of a grid showing all the possible spots pipes are
joined. A player sees one collection of pipes displayed.
This does not show the full complexity of the colony.
Joining each a set of pipes is a cog that can be selected
with a mouse click and dragged to a new spot.

Fig. 3. The Multi-player View of the Plummings
World.

In the game, a selected cog when moved to other
potential grid points will either display a yellow circle or a
green check mark at the mouse pointer. The yellow circle
indicates that this grid location is currently occupied with
another cog and letting go of the mouse will be swap the
existing cog with the dragged cog. A green check mark
on the mouse pointer, however, means that this spot on
the grid is empty and the cog can be moved here without
performing a swap with another cog.

Once a player has swapped or moved a cog to a new
spot, the player will either be shown a new collection of
pipes that is causing the Plummings problems or this same
path will remain as the problem path. At the bottom of the
screen there is an undo and redo button to allow the player
to move forward and backwards in swaps so that there is
no concern about the consequences of making a particular
move.

3.2 FPGA Placement to Game Abstraction

As projects related to other industries have shown [1],
[2], problems formulated into a game can capture the
attention of many thousands of players. Ideally, the game
should be attractive, fun, and addictive. Part of what makes
a game playable and fun is interaction with other players,
it is essential to encourage competition in games with a
purpose (i.e. make people want to do better) otherwise
there will be no drive to improve existing solutions.

In terms of the FPGA placement abstraction, the pipes
displayed in the game map directly to edges (or wire
connections) between clusters and the cogs represent the
clusters themselves. The current path displayed in the
game shows the present critical path for the design, as
measured by the Manhattan Distance, for the current FPGA



placement, and the pressure gauge shows a score of how
successful the player has been in improving the circuit’s
original critical path compared to the current critical path.

We create a "score" for the user based on the current
critical path of the user’s placement. The user then tries
to maximize their score by minimising the critical path.
The process of minimising is achieved by moving two
connected nodes in the critical path closer together. If a
player places a node onto a cluster that is occupied, then
the nodes are silently swapped. Moving a node far from its
original location, in effect, swaps it with a node far away,
which may have adverse effects on paths running through
the swapped node and therefore reduce the score.

This process of swapping is done at the players dis-
cretion without much additional information to make an
informed decision on which cluster to choose and where to
move it. Since the player only sees the current critical path,
the choice of cluster swaps is made mainly to reduce this
critical path. The game still allows the human to explore
more of the optimisation search space, but this search
is neither truly random nor is it made with informative
information. In future, we would like to provide additional
information to the user and a choice of paths to attempt to
shorten.

Each circuit is initially placed by VPR. This initial
placement is used to calculate the base score for players to
improve on. We could remove this requirement and instead
start with an unplaced circuit, however, it would take far
more time for a player to reach a reasonable score. This
initial placement is also a point where it is possible to
conceive some function that allows users to pick from a set
of current best placements. This would lead to incremental
improvements over the best placement, but could lead to
the optimisation being trapped in a local minimum.

We use each placement of a particular benchmark as
a starting point for a level within the game environment.
Players can select from a set of levels/circuits, play the
game for some amount of time, and then unlock further
levels/circuits. The environment maintains the best place-
ment so far for the user, and emails the placed results to
a server so that we can collect the best placement results.

The placed file is converted into an object (representing
the circuit) used by the API and stored in this form. When
a game is selected the API loads up the stored placement
object and the player can begin modifying it. The API
only calculates a new score when a modification to the
placement is made, via specific API calls such as swap()
or move().

The game is, from our small player sample, preferred
by people in multi-player mode. In this mode, a player
sees what is the current best global score for other players
in real time, and tries to beat that score in a given amount
of time. In figure 3, the pressure gauge, in the right bottom

corner, shows the difference between two players. The two
needles show both the players and opponents relative score.

The popularity of the multi-player mode relies on the
fact that in general gamers aim to beat themselves and
every other player, this is the same motive exploited by
FoldIt. Similar to FoldIt, we specify a threshold value that
we class as a ’pass’ value, resulting in the player receiving
skill points. In this way more challenging circuits can
be locked until a player has enough skill (experience) to
attempt the harder circuits.

With all game design, play testing is a key stage in
which designers determine how to make the game the most
fun. From our limited experience, we have found that the
multi-player game is the best in terms of motivating players
to compete and find the best placement. This, however,
may change if we had a large user base of players and
some form of leader board as done in FoldIt.

3.3 Critical Path Calculations

In terms of calculating present critical path for the
current score, the most accurate method would be to use
VPR’s routing tool and calculating the exact critical path
for each placement iteration. This, however, is not feasible
in a real-time game such as Plummings as the router takes
significant time. For this reason, we have implemented an
API that estimates the critical path, understanding that the
loss in accuracy may affect our final results.

To calculate a new score the API employs a Critical
Path Method (CPM) algorithm. This requires a directed,
acyclic graph that is obtained by looking internally at
the clusters and treating flip-flops as primary inputs and
primary outputs. The CPM involves the following stages:

1) Forward Pass - Walk the graph from inputs to outputs
and record, at each node, the maximum cost of
getting from the start node to the current.

2) Backward Pass - Walk the graph from outputs to
inputs and record, at each node, the minimum cost
of getting from the start node to the current.

3) Subtract Values - Subtract the Forward Pass values
from the Backward Pass values.

4) Collect Critical Paths - Walk the graph forwards,
following the nodes which have value 0 (slack = 0).

As the score needs to be calculated at every move we
need to ensure that the algorithm is fast. We achieve this
with parallelization:

1) Split the circuit into 4 circuits, one for each type
of connection (input-output, input-flip-flop, flip-flop-
flip-flop, flip-flop-output).

2) Invert each of the 4 circuits (to compute the back-
ward pass).

3) Execute the CPM passes concurrently on each of the
circuits (8 in total - 4 forward passes, 4 backward



passes).
4) Once the threads are completed, combine the results

to calculate the critical paths.
5) Localised updating by not recalculating the path

calculations if the path is unaffected by a move.
This approach to calculating the Manhattan distance is

not novel, but is an important consideration given the game
abstraction that we are attempting to provide to the player.
Our approach needs to deal with calculating critical paths
in a closer to real-time speed to allow for the game to
be played by a human. The placer within VPR performs
similar estimations of critical path, but in our context we
have more flexibility in trading off accuracy for speed of
the calculations. This is another dimension of the problem,
which we have not had time to explore further.

4. Results

To study the success of our approach, we conduct
a small study on 5 different benchmarks of varying
sizes that come from the MCNC benchmarks [13] and
OpenCores [14]. We compare the placement results of 4
different human players against 5 different random seeded
VPR placements. By comparing the solutions produced by
VPR and human players of our game, Plummings, we can
see how harnessing human computation performs in the
FPGA placement problem.

For these experiments, we have fixed the architecture
parameters of the FPGA. For the interested architects, we
use 4 input LUTs, clusters which include 10 LUTs, and the
routing architecture uses default parameters that come with
the distribution of VPR 5.0. The benchmarks are mapped
to VPR 5.0 using the same CAD flow as presented in [3].

Figure 4 shows the five benchmarks critical paths as
determined by VPR after being placed by either players
or VPR using different random seeds. Critical path is
displayed on the y-axis and the benchmarks are listed
across the x-axis. For each benchmark, the first five bars
are for the placements by VPR for different random seeds.
The next two bars show the geometric averages of first the
VPR placements and then the user placements respectively.
Finally, the next four bars are the critical paths by those
of the 4 humans. The shorter the bar means the shorter the
critical path, which means the circuit will operate faster.

In 4 of the 5 benchmarks, the human players are doing
as well as the computer. The worse case was for “mac2”
where players are performing significantly worse than
VPR. Our initial thoughts are that this benchmark, which
is an implementation of a multiplier accumulator, there are
a high number of near critical paths due to the structure
of the multiplier. Our game abstraction, which presents
critical paths first, is a greedy presentation to the user and
in a way does not pass on information about the large

number of similar paths that will cause problems. In this
case there are too many near critical paths for our approach
to deal with successfully.

We also see that some of the poor placements are due
to the course modelling of critical path lengths. In all
cases, players are able to improve the in game “score”
presented to them, but this does not necessarily translate
into improvements once mapped to VPR. Our model lacks
knowledge of routing behaviour, and we cannot examine
these cases and update the scoring as appropriate, however,
changes to the model could improve the scoring, and
therefore, help move players in the right direction.

The results also show that for the “clma” benchmark,
one user found an exceptional solution (20% improvement
from the averaged VPR critical path) that is superior to all
the other placement results. This result suggests that given
a critical mass of players that these exceptional solutions
may be found more often. The argument to this success is
that given enough time, computing machines and humans
will find such solutions as more of the search space is
explored. This is true, but considering that a human will be
playing a game regardless of work, harnessing that time to
find better solutions to an optimisation problem comes for
free as opposed to the computation and energy resources
used by computational machines dedicated to the task.

5. Conclusion and Future Work

In this paper, we have created a game that can be
used to abstract the FPGA placement problem in order to
harness human computation in a fun and entertaining way.
Furthermore, we have provided preliminary evidence that
humans can produce results as good as those produced
by algorithmic solutions, and in some cases will find
exceptional solutions due to longer exploration of the
search space. For five benchmarks and a small sample
of human players, our results show that humans were
successful in matching results from the VPR tool, and
in some cases finding significantly better solutions. This
comes at no additional cost since harnessing of human
computation is recycling so called “wasted cycles”.

The bigger question of applying harnessing techniques
to general optimisation problems suggests that humans, if
presented a problem in greedy form, may randomly find
better solutions. This is due to the increased time exploring
the search space.

To play a Vista demo version of the game, down-
load at http://www.doc.ic.ac.uk/~pjamieso/
plummings/Plummings.msi.

From a perspective of improving our game abstraction
for the placement problem, it would be useful to make
critical path calculations more accurate approximations to
the routing results obtained through VPR. This problem,



Fig. 4. Bar Graph showing the final Critical Path as calculated by VPR for players versus VPR
placement with different random seeds.

however, exists in all stages of FPGA CAD flow where
there is a desire for low-level detailed information to be
accessible at higher points in the CAD flow. One approach
may be to occasionally run VPR’s routing algorithm during
the playing of the game to obtain more accurate low-level
information.

With better models, we believe a more detailed study is
needed where our game would be distributed on the web
to reach a large audience from which we can obtain large
amounts of data to compare to VPR results. Research into
human computation by exploiting gamers has revealed that
with the right game, many thousands of people are willing
to play, making a huge computational resource available
to solve new problems.

In terms of optimisation problems, our poor results
on larger circuits suggests that it might be appropriate
to break the problem up and distribute these problems,
abstracted into games, to a number of people. This divide
and conquer approach, however, suffers from challenges
of local optimisations versus global optimisations much
like the algorithmic counterparts. In addition, there are a
number of strategies that may be useful to explore, and
it would be interesting to analyse human solutions to see
if there is any knowledge generated by our own heuristic
approaches.

References

[1] “FoldIt http://fold.it/portal/,” 2008.
[2] “ESP Game http://www.gwap.com/gwap/gamesPreview/espgame/,”

2008.
[3] J. L. Ian Kuon, P. Jamieson, T. Campbell, A. Ye, W. M. Fang, and

J. Rose, “VPR 5.0: FPGA CAD and Architecture xploration Tools
with ãĆůngle-Driver Routing, Heterogeneity and Process Scaling,”
in ACM/SIGDA International Symposium on FPGAs, Feb 2009.

[4] “Apple Genius http://www.apple.com/itunes/features/#genius,”
2008.

[5] L. von Ahn, R. Liu, and M. Blum, “Peekaboom: A Game for
Locating Objects in Images,” in ACM Conference on Human
Factors in Computing Systems, 2006, pp. 55–64.

[6] “Miniclip http://corporate.miniclip.com/about-miniclip.htm,” 2008.
[7] Luis von Ahn and Ben Maurer and Colin McMillen and David

Abraham and Manuel Blum, “reCAPTCHA: Human-Based Char-
acter Recognition via Web Security Measures,” Science, pp. 1465–
1468, Sept. 2008.

[8] V. Betz, J. Rose, and A. Marquardt, Architecture and CAD for Deep-
Submicron FPGAs. Kluwer Academic Publishers, 1999.

[9] IEEE Standard VHDL Language Reference Manual, IEEE, 1987.
[10] Verilog Hardware Description Reference, Open Verilog Interna-

tional, March 1993.
[11] G. Lemieux and D. Lewis, “Directional and Single-Driver Wires in

FPGA Interconnect,” in IEEE International Conference on Field-
Programmable Technology, Dec 2004, pp. 41–48.

[12] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimization by
Simulated Annealing,” Science, vol. 220, no. 4598, pp. 671–680,
May 1983.

[13] S. Yang, “Logic Synthesis and Optimization Benchmarks, Version
3.0,” 1991, tech. Report. Microelectronics Centre of North Carolina.
P.O. Box 12889, Research Triangle Park, NC 27709 USA.

[14] “http://www.opencores.org,” 2007.


