
Framework and Tools for Undergraduates Designing RISC-V
Processors on an FPGA in Computer Architecture Education

Peter Jamieson, Tyler McGrew, and Eric Schonauer
Electrical and Computer Engineering

Miami University
jamiespa@miamioh.edu

Abstract—Arguably, each computer engineer undergrad
should build a simple processor in the pursuit of their degree to
help them internalize the basic design principles and properties
of a computer. With the proliferation of FPGAs in universities
this is, easily, realizable in most undergraduate curricula. Many
modern courses on computer architecture or organization rely on
MIPS architectures (among others) as the base processor to learn
with, but the MIPS architecture has little commercial success
and real-world implementations that will allow students to get
additional career benefit from building and learning about a
used architecture. The increasing industrial interest of RISC-
V ISA, its free availability, and its early success in real-world
adoption makes this processor a great potential candidate in
this educational space. This work provides suggestions on how
undergraduates should build a RISC-V architecture on an FPGA,
and a basic framework of tools and design principles for this
exercise.

I. INTRODUCTION

Undergraduate computer engineering curriculum [1] in-
cludes understanding the design and operation of a processor
as well as the tools, software, and optimizations that relate
to it. The details of understanding how a processor works is
achieved in the suggested curriculum with 10 hours of study
on computer organization and 10 hours of study with the
instruction set architecture (ISA). This understanding can be
achieved in a number of ways, but there is a popular belief that
a future computer engineer should at least build one processor
in their undergraduate education.

At Miami University, we do not force undergraduate com-
puter engineers to build a processor, but we do suggest the
value of such an exercise. However, our computer organization
course is structured to allow students to pursue their interests
via badge-based learning [2]. Students that select to build a
processor can also choose what type of processor to build.
In the past, students have built PIC [3], AVR [4], and MIPS
[5] processors where the MIPS processor is the most popular
choice since they, typically, start by learning the MIPS ISA
for a basic understanding of assembly programming. With
the invention of the RISC-V [6] processor and its potential
adoption by a range of corporations due to the freely avail-
able instruction set makes it a great candidate processor for
undergraduates to design on an FPGA. The main benefit of
building a RISC-V processor is that a computer engineer gets
the dual benefit of building a processor, and getting a better
understanding of a machine that is used in the real-world
including major industries.

In this work, we describe the tools and design choices used
to create RISC-V processors on an FPGA. This includes the
tools used to simulate the RISC-V programs, the tools used to
create the processor on the FPGA, and the design choices
made to make the design tractable for undergraduates. We
provide links to two processors created in our course, and
describe additional extensions that were done by these students
to get advanced badges in the course. The hope of this work is
to provide computer engineering educators and students with
an idea on how to approach the base design of a RISC-V
processor.

The remainder of this paper is organized as follows: Sec-
tion II provides a brief description of previous work in this
area. Section III describes the set of tools and the design
choices made to create the exemplar architectures. Section IV
describes are two implementations and extensions added to
these processors. Finally, section V provides discussion and
concludes the paper.

II. BACKGROUND - COMPUTER ARCHITECTURE IN
COMPUTER ENGINEERING EDUCATION

A typical undergraduate course in computer architecture
will use textbooks such as Patt and Patel’s, ”Introduction to
Computing Systems - from bits & gates to C & beyond” [7]
and Patterson and Hennessy’s, ”Computer Organization and
Design - The Hardware/Software Interface” [8]. Both books
are bottom up approaches to learning about computer architec-
ture that start with an introduction or understanding of digital
components that make up the system, and then continues with
assembly language, moving to more and more complex topics
in computer architecture until the student begins to understand
how a high-level program, written in the C language [9], is
mapped to a processor and executed. Another popular textbook
and framework, by Nisan and Shockan [10], promotes a project
based approach to systems from low-level gates all the way
to a video game running on a system.

For decades, it has been debated among educators what
and how to teach computer architecture and organization [11].
For example, one of the first questions in these courses is
what architecture to use as the exemplar system [12]. Each
of the above textbooks uses a different architecture (LC-2,
MIPS, and Hack, respectively), and these 3 choices are just a
small sample of other possibilities, which include ARM [13],
PIC [14], and x86 [15]. With the choice of an architecture,



the next question is how to study the system with possibil-
ities including assembly programming using simulators [16]
[17] [18], FPGA implementations of processors [19] [20], or
thought experiments of processor function [21]. After making
the above two decisions, the approach to what students do in
a course can vary from lectures, assignments, exams, projects,
and other activities. For example, project-based learning [22]
and experiential learning [23] has had a recent revival as
universities look to student-centered approaches to learning
- computer architecture is no exception to these trends [24]
[2].

This paper examines how students can use the RISC-V as
the modern processor to implement on an FPGA. The rea-
sons for considering another processor in the already heavily
populated educational processor space includes:

• A RISC processor similar to MIPS
• A free and open ISA
• A modern processor being adopted in industry in

academia
• A suite of tools for simulation and compilation
• A easily supported software stack

III. TOOLS AND DESIGN CHOICES FOR RISC-V
PROCESSORS

A. Simulator and Assembler

The first tools needed to understand an architecture is a
simulator and assembler. In many cases, the simulator and
assembler are included in the same software tool. For example,
MARS [25] simulator is a popular simulation tool for MIPS
that includes simulation and assembling of MIPS programs
among other tools for educational purposes.

For RISC-V, there are a number of choices available on the
RISC-V site (riscv.org/software-status/). The one which we
use in our cases was designed by Morten B. Petersen called
“Ripes” and available at github.com/mortbopet/Ripes as of the
writing of this paper. Ripes is a simple tool that simulates a 5-
stage pipelined RISC-V machine (not necessarily helpful for
the actual design on the FPGA) and is easy to use to get
machine encoded data for the assembly programs.

Other software tools such as a cross-compiler version of
“gcc” and “gdb” are available to take high-level code and
compile and debug the RISC-V architecture. These tools,
though useful, are not necessary for the FPGA implementation
and testing described in this work.

B. FPGA tools

The tools we used for our FPGA implementations of a
RISC-V processor are all Intel based. Note, however, any
FPGA toolset can be used, and we will name the generic
tool name and industrial tool name so that others can use
similar tools. Also, our hardware implementation language is
Verilog [26], which is a Hardware Description Language. This
exercise can also be done in other HDLs, such as VHDL, in
schematics, or in higher level hardware design languages. We,
however, recommend using an HDL as a good middle ground

for this where, hopefully, students have a good understanding
of the circuits generated by their “synthesizable” HDL design.

The main tool in the Intel flow is Quartus which takes in a
design and synthesizes for the Intel FPGAs. Our labs contain
DE2-115 boards from Terasic, and these boards include a
Cyclone FPGA. Quartus includes an FPGA programmer that
allows the design to be synthesized and programmed to a real
FPGA.

The Quartus tool can be setup to use ModelSim that allows
the simulation of digital design of the processor. A user
program is loaded with the bits that are used to configure
the design on the FPGA (we describe the details of this
later). Similarly, a tool called “SignalTap” allows the actual
programmed processor on the FPGA to be analyzed where
“SignalTap” is an on-chip logic analyzer. Both simulation and
the logic analyzer are used to debug the design. Also, with
the simulator alone, in theory, a student could complete most
of this exercise and prove that their processor works without
needing a physical FPGA. We, however, require a real FPGA
programming to emphasize other aspects of real engineering
including a prototpye board with limited clock frequency and
silicon area as real constraints for a practicing engineer.

C. RISC-V Architecture Constraints
The RISC-V version 2.2 documentation has a frozen base

ISA [6] that has to variants - 32 bit or 64 bit. For this work,
the RV32I is the base ISA that students should start from,
but the best starting definition is the Tiny RISC-V Instruction
set architecture from Cornell (www.csl.cornell.edu/courses/
ece5745/handouts/ece5745-tinyrv-isa.txt); the TinyRV2 within
that document is a nice basic processor that can run simple
C programs and includes 34 instructions in the following
instruction categories:

• Control/Status Register Instructions
• Register-Register Arithmetic Instructions
• Register-Immediate Arithmetic Instructions
• Memory Instructions
• Unconditional Jump Instructions
• Conditional Branch Instructions

D. FPGA Implementation Details

Fig. 1. A simple block diagram of the pieces of the RISC-V architecture

Figure 1 shows a basic block diagram of the major com-
ponents of the RISC-V system. Note, that the details of the
architecture are not observable from this diagram.



From a design standpoint we recommend that a designer
first create their own version of Figure 1 with more detailed
control lines and hardware components such as multiplexers
(muxes), additional registers, and other arithmetic operators.
The main reason for this is so that the designer can understand
what is the data path and what are the control signals for
this data path for their processor implementation. Also, this
provides a useful high-level design that an instructor can
look at and quickly assess if the designer understands all the
components of the system and how they will interact.

Next, each of the major components, excluding the control,
should be created and tested, and each should be implemented
as a separate module in Verilog. Generally, we recommend
building the arithmetic logic unit (ALU), the register file, and
then the memory in order. In each case, the module input
and outputs will correspond to signals in the designers initial
diagram, and eventually these pieces can be treated as clear
boxes in the design.

For the memory module, the university version (as well
as the professional version) of Quartus has an “IP Catalog”
tool that allows a designer to create on-chip memory. This
tool creates a memory and shows a schematic of the memory
module including signals going in and out of the module and
any included registers on these paths. Also, within this tool you
can specify a memory initialization file (mif) that will initialize
the memory after programming the design onto the FPGA.
This is how a user program can be loaded into memory, and
for simplicity, we assume that the program start is at address
0. Alternatively, an off-chip SRAM memory chip is available
on the DE2-115 and could be interfaced with the processor. In
this case, however, a programmer also needs to be designed
to initialize that memory with the program data.

The register file can also be implemented as an IP memory
module with two read ports. We, however, recommend that
a register file is implemented as a Verilog module using the
register bits available in the soft-logic of the FPGA. There are
two reasons for this. First, the access time of the register file
will be one clock cycle, which is similar to a real ASIC design,
and second, the design process helps student’s understand the
design of memories.

Once the major components are designed, then a top level
module can be created with a finite state machine (FSM),
muxing logic for the datapaths, and control signal generation
from an instruction register to control the remainder of the
processor. A simple four stage (fetch, decode, execute, write)
model can be built within the FSM. This exercise is not simple,
but is a function of understanding the control signals in the
system and identifying which signals need to be set for each
instruction. Branching and program counter (PC) incrementing
is the last piece of the exercise that needs to be designed in
the control.

IV. IMPLEMENTATIONS AND EXTENSIONS TO THE RISC-V
PROCESSORS

In 2019, the computer organization course at Miami was
taught as a badge-based course, and two students chose to

implement the RISC-V processor (and are co-authors of this
paper). These students have already completed basic program-
ming courses and have completed a 2nd year digital systems
course, which introduced them to Verilog. In both cases, the
above described tools were used to design the processors and
map them to DE2-115 prototyping boards. Table I provides
basic information on the two implementations. Column 1
shows the last name of the designer, column 2 shows the ISA,
column 3 provides the url to the code repository for the design
files, and column 4 describes extensions to the architecture that
students do to get an advanced badge in the course.

Extensions to the base hardware can include caches,
pipeline, multicore system, and operating system functionality
[27] [28] [29]. For the two extensions to the base processor
in this course, McGrew implemented a simple cache, and
Schonauer implemented a multicore system with a fence
for access to shared memory. The memory IP from quartus
typically take 2 cycles to access the data from in load
operations. The goal of the cache is to build the hardware
to make loads only cost 1 cycle on cache hits. The multicore
implementation, by Schonauer, demonstrates a simple shared
memory parallel machine with multiple cores that use an
arbitrator to implement fence-like operations in the ISA.

V. DISCUSSION AND CONCLUSION

Project-based learning continues as a pedagogically sound
approach to most of engineering education, and computer
architecture education is no exception. The concepts an under-
graduate needs to learn for computer architecture is very broad,
but the experience and skills learned by creating a processor
and implementing it on an FPGA are highly valuable. In this
work, we provide a description of tools, design constraints,
and ideas in how an undergraduate can design a RISC-V
architecture and map it to an FPGA. The key benefit of
choosing the RISC-V architecture is that it is a freely available
ISA that is simple for students to understand. Additionally,
there are a number of mature tools that have been created for
the ISA, and this processor is getting more and more traction
in industry and academia. For these reasons, we believe that if
undergraduates are going to implement an architecture (and we
believe that all of them should do this exercise) then RISC-V
is the best choice.

One concern for educators with these types of exercises
is will students actually perform the exercise, or will the
students access the vast array of resources (including the two
implementations listed here) and use someone else’s work.
For example, the BRISC-V tools [30] could be used by a
student to quickly build a processor for submission to a
course. This problem becomes worse as the number of students
in computer architecture course increases, and project-based
learning approaches become less and less viable for teachers.
Our simple solution to this problem is to predefine either the
ALU or a special instruction for each students design.

Of the two solutions, we believe that creating a black-
box ALU with varying parameters is the easiest solution
to implement. For example, the instructor could design a



TABLE I
DETAILS OF THE TWO IMPLEMENTATIONS

Creator ISA web hosting at: github.com/ Extension Notes
McGrew TinyRV2 tymcgrew/RISC-V Cache No CSRR, CSRW instructions

Schonauer TinyRV2 EricSchonauer/RISC-V-Processor Multicore with Fence No CSRR, CSRW instructions

set of ALUs that have different ways of control such as
an accumulator based ALU, a registered ALU, a sequential
single-bit sequential ALU [31], and an 8-byte ALU. The
control signals to and from each of these ALUs will create
changes in the datapath that will challenge students in copying
other designs without deeper understanding of the architecture.

From a future work perspective, the perfect educational
extension to this work is the integration of a number of
exercises after the creation of the processor that would allow
students to improve their base architecture, create a software
tool chain including compiling and linking for their processor,
and create system software that would manage their system
(similar to [10]). These exercises, over a number of courses,
would give an undergraduate a deep understanding of the
modern computer and its tools.

REFERENCES

[1] J. Impagliazzo, S. Conry, E. Durant, J. L. Hughes, and R. Meier,
“Launching curricular guidelines for computer engineering: Ce2016,”
in Frontiers in Education Conference (FIE), 2016 IEEE. IEEE, 2016,
pp. 1–4.

[2] P. Jamieson, “Does badge-based learning buck the grading curve? an
educational experiment in computer architecture,” in Proceedings of the
International Conference on Frontiers in Education: Computer Science
and Computer Engineering (FECS), 2014.

[3] M. Bates, PIC microcontrollers: an introduction to microelectronics.
Elsevier, 2011.

[4] N. Alizadeh, “Avr enhanced risc microcontrollers data book,” ATML
corporation, vol. 33, p. 102, 1996.

[5] J. Hennessy, N. Jouppi, S. Przybylski, C. Rowen, T. Gross, F. Bas-
kett, and J. Gill, “Mips: A microprocessor architecture,” in MICRO
15: Proceedings of the 15th annual workshop on Microprogramming.
Piscataway, NJ, USA: IEEE Press, 1982, pp. 17–22.

[6] A. Waterman, Y. Lee, D. A. Patterson, and K. Asanovic, “The risc-v
instruction set manual, volume i: Base user-level isa,” EECS Department,
UC Berkeley, Tech. Rep. UCB/EECS-2011-62, vol. 116, 2011.

[7] Y. N. Patt and S. J. Patel, Introduction to Computing Systems: From Bits
& Gates to C & Beyond. New York, NY, USA: McGraw-Hill, Inc.,
2004.

[8] D. Patterson and J. Hennessy, Computer Organization and Design: The
Hardware/software Interface. Morgan Kaufmann, 2005.

[9] B. W. Kernighan and D. M. Ritchie, The C programming language.
Prentice-Hall, 1978.

[10] N. Nisan and S. Schocken, The elements of computing systems: building
a modern computer from first principles. MIT press, 2005.

[11] A. Clements, “The undergraduate curriculum in computer architecture,”
IEEE Micro, vol. 20, no. 3, pp. 13–21, 2000.

[12] ——, “Selecting a processor for teaching computer architecture,” Mi-
croprocessors and Microsystems, vol. 23, no. 5, pp. 281–290, 1999.

[13] ——, “Arms for the poor: Selecting a processor for teaching computer
architecture,” in 2010 IEEE Frontiers in Education Conference (FIE).
IEEE, 2010, pp. T3E–1.

[14] M. Smolnikar and M. Mohorcic, “A framework for developing a
microchip pic microcontroller based applications,” WSEAS Transactions
on Advances in Engineering Education, vol. 5, no. 2, pp. 83–91, 2008.

[15] M. D. Black and P. Komala, “A full system x86 simulator for teaching
computer organization,” in Proceedings of the 42nd ACM technical
symposium on Computer science education. ACM, 2011, pp. 365–370.

[16] G. S. Wolffe, W. Yurcik, H. Osborne, and M. A. Holliday, “Teaching
computer organization/architecture with limited resources using simu-
lators,” in ACM SIGCSE Bulletin, vol. 34, no. 1. ACM, 2002, pp.
176–180.

[17] C. Yehezkel, W. Yurcik, M. Pearson, and D. Armstrong, “Three sim-
ulator tools for teaching computer architecture: Little man computer,
and rtlsim,” Journal on Educational Resources in Computing (JERIC),
vol. 1, no. 4, pp. 60–80, 2001.

[18] B. Nikolic, Z. Radivojevic, J. Djordjevic, and V. Milutinovic, “A survey
and evaluation of simulators suitable for teaching courses in computer
architecture and organization,” IEEE Transactions on Education, vol. 52,
no. 4, pp. 449–458, 2009.

[19] Y. Li and W. Chu, “Using fpga for computer architecture/organization
education.” in WCAE@ HPCA. Citeseer, 1996, p. 5.

[20] M. Holland, J. Harris, and S. Hauck, “Harnessing fpgas for computer
architecture education,” in Proceedings 2003 IEEE International Con-
ference on Microelectronic Systems Education. MSE’03. IEEE, 2003,
pp. 12–13.

[21] P. Jamieson, D. Davis, and B. Spangler, “The mythical creature
approach-a simulation alternative to building computer architectures.”
in FECS, 2010, pp. 23–28.

[22] J. Macias-Guarasa, J. Montero, R. San-Segundo, A. Araujo, and
O. Nieto-Taladriz, “A project-based learning approach to design
electronic systems curricula,” Education, IEEE Transactions on,
vol. 49, no. 3, pp. 389 –397, 2006. [Online]. Available: http:
//ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1668283

[23] D. A. Kolb et al., Experiential learning: Experience as the source of
learning and development. Prentice-Hall Englewood Cliffs, NJ, 1984,
vol. 1.

[24] A. Martı́nez-Monés, E. Gómez-Sánchez, Y. A. Dimitriadis, I. M. Jorrı́n-
Abellán, B. Rubia-Avi, and G. Vega-Gorgojo, “Multiple case studies to
enhance project-based learning in a computer architecture course,” IEEE
Transactions on Education, vol. 48, no. 3, pp. 482–489, 2005.

[25] D. K. Vollmar and D. P. Sanderson, “A mips assembly language
simulator designed for education,” Journal of Computing Sciences in
Colleges, vol. 21, no. 1, pp. 95–101, 2005.

[26] Verilog Hardware Description Reference, Open Verilog International,
March 1993.

[27] J. H. Lee, S. E. Lee, H. C. Yu, and T. Suh, “Pipelined cpu design
with fpga in teaching computer architecture,” IEEE Transactions on
Education, vol. 55, no. 3, pp. 341–348, 2012.

[28] J. Gray, “Hands-on computer architecture: teaching processor and inte-
grated systems design with fpgas,” in Proceedings of the 2000 workshop
on Computer architecture education. ACM, 2000, p. 17.

[29] Z. Tan, A. Waterman, R. Avizienis, Y. Lee, H. Cook, D. Patterson,
and K. Asanović, “Ramp gold: an fpga-based architecture simulator
for multiprocessors,” in Proceedings of the 47th Design Automation
Conference. ACM, 2010, pp. 463–468.

[30] S. Bandara, A. Ehret, D. Kava, and M. Kinsy, “Brisc-v: An open-
source architecture design space exploration toolbox,” in Proceedings of
the 2019 ACM/SIGDA International Symposium on Field-Programmable
Gate Arrays. ACM, 2019, pp. 306–306.

[31] J. Robinson, S. Vafaee, J. Scobbie, M. Ritche, and J. Rose, “The
supersmall soft processor,” in 2010 VI Southern Programmable Logic
Conference (SPL). IEEE, 2010, pp. 3–8.


