Analyzing a Low-bit rate Audio Codec - Codec2 - on an FPGA

Peter Jamieson and Santhiya Sampath Kumar
Electrical and Computer Engineering

Miami University, Oxford, OH, USA
jamiespa@miamioh.edu

Abstract—Audio compression codecs are an important appli-
cation in the Internet of Things (IoT) space where small sensing
devices may gather voice signals, but then need to transmit
the information to aggregating servers at a low cost. In this
work, we implement and evaluate a hardware implementation
of the Codec2 (a lossy speech compression codec) in Verilog
Hardware Description Language (HDL) and map it to an Intel
CyclonelV FPGA. We describe the details of our implementation
approach, including how we represent data inside the hardware
implementation and the associated cost of this implementation
on an FPGA. We analyze our implementation compared to a mi-
croprocessor implementation of the original software to observe
what performance we get on an FPGA versus a microprocessor.
Our hardware implementation of Codec2 is qualitatively the same
in terms of hearing the spoken transmission and has an error
rate of 6.55 bits per frame (48 bits), and is 10 times slower
and consumes slightly more power on a small FPGA compared
to a microprocessor implementation. We provide this design as
open-source hardware so that we have an HDL version of this
application that can be mapped to both FPGAs and ASICs
providing a research reference point, a baseline to optimize, and a
described methodology to convert C to hardware for researchers.

Keywords-Voice Compression, Lossy, FPGA, Hardware De-
scription Language

I. INTRODUCTION

Human speech is a common signal that is transmitted in a
variety of applications in radio communications. Depending on
the compression of the speech signal, there are trade-offs with
the quality of speech versus the associated communication
signal size. For example, signal size can be quantified in
terms such as bits per sample and sampling rate in a digital
communication sense. Larger signals require higher capacity
communication links, more time for transmission, more power
consumption to transmit the signal, and more storage capacity
at both the transmission and receiving nodes. Compressing
a signal reduces many of these factors but comes with a
computational cost to perform the compression processing.
For several applications, such as Internet of Things (IoT),
one potential goal is to transmit information contained in
speech with minimal power and computation resources at
the expense of a low-quality speech signal [1]. Many audio
compression codecs (COder and DECoder) have been created
for this purpose, and we focus on Codec2 as our compression
algorithm [2].

Codec?2 is an open-source and patent-free audio codec that
compresses audio to the lowest bit rate, at the publication date
of this work. Codec?2 is implemented in C, and the algorithm is

José Augusto M. Nacif, Ricardo Ferreira
Universidade Federal de Vicosa
Vicosa, Minas Gerais, Brazil

typically executed on a microprocessor. One of the key benefits
of this algorithm is that it has been developed without any
existing commercial intellectual property restrictions, and re-
searchers and developers can use this codec for any application
without restriction.

This work implements a Register Transfer Level (RTL)
version of Codec?2 targeting a Field Programmable Gate Array
(FPGA) in Verilog HDL. The key questions of this are to see
what trade-offs in terms of computation speed and quality a
hardware implementation of the Codec2 encoder on FPGA
results in compared to the software implementation executing
on a microprocessor. We hypothesize that a hardware im-
plementation will be faster than a software implementation
on a microprocessor due to custom parallel implementation
capabilities possible on an FPGA. Additionally, the creation
of this hardware core will allow future chip designers to
test and implement Codec2 on other FPGAs and even ASIC
versions of this core (if the market demand ever is high enough
to justify the high cost of manufacturing ASICs). To verify
our hypothesis, we implement and test a Codec2 encoder in
Verilog and mapped it to Terasic’s DE2-115 [3] prototyping
board with an Intel Cyclone IV FPGA [4]. Our design is more
efficient than an implementation running on a RaspberryPi,
and its ARM processor, but the FPGA clock rate results in
the design taking more time.

One additional contribution of this work for the IoT commu-
nity is our approach maps the Codec2 design to Verilog HDL
to target any FPGA or ASIC implementation by converting the
C into simple synthesizable HDL. In this process, we provide a
method to convert C into HDL. Alternatively, we might choose
to use a High-level synthesis (HLS) tool that automatically
converts C (with some modifications) into HDL, such as Legup
[5] or tools provided by Intel and Xilinx. An HLS approach
is viable, but those tools tend to be tightly coupled with the
FPGAs that those companies provide, and understanding the
hardware created by the HLS tool is more indirect. Instead,
by creating a low-level Verilog implementation, our core is
more portable to various FPGAs and ASICs and is open and
accessible along similar lines to the main thrust of the Codec2
principles.

The remainder of this paper is organized as follows: Section
IT provides background information on audio compression
techniques, Codec2, and previous work on the hardware
implementation of Audio Codecs. Section III describes the
details of our hardware implementation of the Codec2 encoder
in Verilog, targeting an FPGA. Section IV discusses our

experiments, results, and analysis of the performance of our
implementation. Section V discusses possible improvements
and future work, and section VI concludes this work.

II. BACKGROUND

In this section, we provide details on audio compression,
Codec2, and describe existing hardware implementations of
audio Codecs on hardware - mainly FPGAs.

A. Audio Compression

Audio compression techniques attempt to shrink the signal
size via lossy or lossless compression techniques. Lossless
compression techniques find redundant data in the encoding
of the signal at the transmission side and are completely
recoverable at the receiver side. A well-known algorithm in
this domain that can be applied to a digital signal is the
Lempel-Ziv algorithm [6]. Lossy compression, on the other
hand, attempts to remove data that captures the quality of
the signal, but it is not completely necessary to receive
the information content. This makes the signal less like the
original signal, but the signal contains the relevant information.
For example, an original speech signal includes characteristics
that would allow a listener to identify who the speaker is based
on the acoustics, but lossy compression can remove these
qualities to only transmit the information (the words spoken).
A well-known algorithm for lossy audio compression is MP3
encoding [7], but for this case the information that is removed
is less perceivable by humans, and from a human perspective
audio signal seems to be of high quality.

The research areas of audio compression and data com-
pression are vast areas of research. We suggest that unfamiliar
readers start with Kavitha’s recent survey on lossy and lossless
compression techniques [8] and Uthayakumar et. al. survey on
data compression techniques [9].

B. Codec2

The focus in this work is on lossy compression for speech.
In particular, we focus on the Codec2 [2] implementation.

Codec2 is a patent-free and open-source speech codec
software developed by Dr. David Rowe, who has implemented
a number of low bit-rate speech compression and High-
Frequency (HF) modems, with a focus on combining these
technologies for digital voice over radio applications [2].
Codec? is designed for lossy speech compression and operates
at different rates, including 3200, 2400, 1600, 1400, 1300,
1200, 700, and 450 bit/s. There exist several competing codecs
in this domain, such as MELP (a licensed codec) [10] and
Speex (another open-source codec) [11] that operates in the
range of 5000 bits/s.

Figure 1 shows the Digital Voice Radio System [2], which
is an HF modem, and Codec2 was originally designed to be
incorporated into this system. This system uses a microphone
to capture the input speech, which is then fed into Analog
to Digital converter (ADC), and the ADC converts the inputs
and converts the analog speech into 8000 samples per second.
The Codec2 encoder compresses the input samples from 8000

microphone—{ A/D > :r?guedcezr > enFcItE:c:Ier » mod

v
HF/VHF

radio

v

Codec2 FEC
speaker-4— < < <

p D/A decoder decoder demod

Fig. 1. Digital Voice Radio System

samples/s to a compressed form (for example, 2400 bits/s
depending on the mode of the Codec2 software chosen). A
Forward Error Correction (FEC) encoder takes 2400 bits/s
from the Codec2 encoder, and after modulation, the data
is transmitted over the radio channel. The decoding stages
reverse the processing to generate an analog audio signal that
can be listened to with a speaker.

1) Codec2 Encoder: Our work focuses on developing a
hardware implementation of the Codec2 encoder. We choose
one compression mode to implement in hardware, which is
the 2400 bits/s (called M O D E2400 from now on). The other
modes could be implemented from our example hardware
codec, but the process of conversion is not trivial.

Speech samples

N Pitch Pitch ; 1 bit
Estimation Quantization|
Fourier MBE N 1 bit
Transform Voicing test 7
LPC LPC Lsp ;)
Analysis to Quantization 36 bits
LSP

Wo and
Energy
Quantization

% 8 bits

Fig. 2. Codec2 Encoder Block Diagram [2]

C. Hardware Implementations of Lossy Audio Compression
Codec

Lossy compression codecs can be implemented on various
computational system substrates. In this section, we provide

existing examples of state-of-the-art hardware implementa-
tions of lossy audio compression Codecs. Examples include an
MP3 codec on a microprocessor [12], an MP3 codec on a DSP
processor [13], and an image compression algorithm on a GPU
[14]. Our focus is on FPGA implementations of compression
audio codecs, and we briefly survey existing implementations
in the research literature.

The MELP encoder which operates at 2400 bits/s, is im-
plemented using Vivado HLS on a Zync-7 FPGA [15]. The
algorithm is coded in C and is converted to Verilog with
the HLS tool. This work then compares the area utilization
and latency of the C-synthesis with the post-synthesis of the
design to the Verilog RTL model. This work shows that the
Verilog model utilizes fewer resources when compared to a
C-Synthesis model.

The Advanced Multi-Band Excitation (AMBE) work is
a Codec module that uses Intel’s Quartus to synthesize a
VHDL design targeting a Cyclone II FPGA [16]. This work
demonstrates that an FPGA can replace both DSPs and micro-
controllers in a traditional voice communication systems. Here,
the FPGA acts as a Codec and AMBE chip controller. It also
acts as interface support for the Subscriber Line Interface Card
(SLIC) and handles the Dual Tone Multi-Frequency (DTMF)
decoding. They demonstrated that an FPGA can be used to
implement a complete speech system on a single chip.

The work on ‘An Efficient Hardware Architecture of
Codec2’ implemented Codec2 decoder to process 1200 bits/s
using Verilog and synthesized on Xilinx’s Artix-7 XC7A100T
FPGA [17]. Their approach was to implement a ‘Very Long
Instruction Word(VLIW)’ architecture for parallelism and
pipelining of each of the DSP algorithms. For the Fast Fourier
Transform (FFT) and IFFT blocks, a butterfly operation is
designed with pipelining scheme to reduce the computation
time of 512-point FFT for every frame. They showed that
this decoder implementation reduces processing time up to 20
times when compared to a Cortex-M4 CPU.

Our low-level RTL version in Verilog is a direct translation
of the C code to HDL. We provide this implementation as an
open-source codec that researchers can use as a base starting
point for their work. This means there is plenty of potential
to implement optimizations such as pipelining, parallel cores
for separate frames, etc.

III. CODEC2 HARDWARE IMPLEMENTATION

In this section, we describe Codec2 Hardware Implementa-
tion.

Rowe’s open-source Codec? is written in the C language[18]
and can be executed on a Linux system with a microprocessor
such as the RaspberryPi. To synthesize this design directly
from the C to an FPGA, all the variables, constants, and
functions in the code-base must be implemented in fixed-point
representation as opposed to floating-point to achieve results
with a reasonable number of hardware resources. For example,
multiplication and division in floating-point representation
involve operations that consume considerable amounts of
FPGA logic resources. We used a fixed-point multiplier from

“Opencores” Fixed point Math Library [19], and the floating-
point multiplier is generated with Quartus’ “IP Catalog” tool.

All of the other basic C operators such as division, square
root, logarithm, etc. are also fixed-point representations, and
all the existing variables and functions from C are converted to
Verilog using this fixed-point representation. We chose to use
a 32-bit fixed-point representation for our base representation
in the system (meaning in some cases we convert to other
formats), which includes the input samples, constants, and
other variables.

\L 15 bits for exponent
1 sign bit

16 bits for mantissa

Fig. 3. 32-bit Fixed-point representation

Our fixed-point representation uses a customized 32-bit data
representation that contains 16 bits for the exponent part (most
significant bit for sign representation) and 16 bits for the
mantissa, as shown in Figure 3. For certain operations, an 80-
bit fixed-point representation is used for squaring values and
for all variables where the decimal values exceed 15 bits in the
exponent portion of the number. The 80-bit data representation
contains 64 bits for the exponent and 16 bits for the mantissa.
Whenever there is a demand for accuracy in the fractional part
for some variables in the Verilog modules, the length of the
exponent and mantissa are modified while retaining the length
of 32-bit and 80-bit data representation throughout the design.

A. C code to FSM

The main step in converting the C codebase into Verilog
is to implement the sequential computation in Verilog using
Finite State Machines (FSM). The FSM model of the Codec2
encoder for one FFRAM E is shown in Figure 4, and this figure
shows the sequential implementation of the C code.

B. External and Internal IP Cores for Base Operations

For the basic set of mathematical operations in the Verilog
design, we use existing IP and create our IP for base operations
as described below.

For our fixed-point operations of addition and multiplica-
tion, we use cores from “Opencores* Fixed point Math Library
[19]. The division and square root operations are created by
implementing the Newton-Raphson algorithm [20] as an FSM.
The logarithmic and trigonometric operations such as cos,
acos are written using a CORDIC algorithm [21] implemented
as Verilog FSMs.

The full list of IP cores used by the encoder modules is
given in Table I. In this table, column 1 shows the source of
the core, column 2 shows the name of the Verilog module in
our design, and column 3 shows the operation performed by
the core.

start_oneframe == 1'd0

done_aof == 1'd0

done_elsp == 1d0

Fig. 4. FSM model of the Codec2 encoder for one FRAME (20 ms)

TABLE I
L1ST OF IP CORES FOR BASE OPERATIONS IN OUR 32-BIT
REPRESENTATION USED IN THE IMPLEMENTATION.

Source IP Cores Operation
Opencores qadd Addition
gqmult Multiplication
fp_div_clk Division
fpgreaterthan | inequality check
fp_logl0 log10
Custom-built | acosf arc cosine
cossin_cordic | sine and cosine
fpmod modulo
fpsqrt square root

C. Memory model implementation of the C code in Verilog

Arrays in C are implemented as on-chip Random Access
Memories (RAMs) or Read Only Memories (ROMs) based
on array usage. The Verilog modules for the memories are
created with the “IP Catalog” available in Quartus. These on-
chip memories can be customized in bit-width and number of
memory locations due to the FPGA technology, and in theory
can be implemented more efficiently than on a microprocessor,
but there is very little gain from these optimizations.

D. Codec2 Modules

We convert a “C” block to a Verilog implementations. Once
we’ve implemented a sequential version of each module, we
then consider if it can be parallelized and how to achieve
that parallelization with traditional optimizations such as loop
unrolling, parallel operation execution, etc.

Table II shows each of the Verilog modules and the sub-
modules of our design.Column 1 lists each of the encoder
blocks, column 2 has the modules and sub-modules imple-
mented in Verilog, column 3, 4, and 5 shows the respective
utilization for the module in terms of Logic Elements, Memory
bits, and 9-bit multiplier blocks.

IV. RESULTS

For our experiments, we evaluate our FPGA implementation
of Codec2 encoder (which we call PG A_C2 from now on in
this work) with that of the software implementation of Codec2
running on a RaspberryPi.

Our FPGA is a small FPGA available from Intel that is
part of the DE2-115 prototyping board from Terasic [3]. The
FPGA is a Cyclone IV EP4CE115F29C7 FPGA, and we use
Intel’s Quartus tool (Quartus Prime 16.1.0) to synthesize and
program the FPGA. Our testing framework uses a combination
of simulation and a tool called signal-tap, which is an on-
board logic analysis tool [22]. The DE2-115 has a 5S0MHz
clock, and our results are reported at this clock rate. Note,
that the maximum frequency achieved with the design is no
significantly higher, and therefore, our choice was to produce
results at this fixed clock frequency without using the Phase-
locked Loops available on the FPGA. When synthesizing
our design for analysis, we use the following optimization
parameters in the Quartus tool: “Optimization Technique* for
area or speed is chosen as “Balanced”; “Optimize Timing” is
chosen as “Normal”.

We compare our FPGA implementation to a RaspberryPi 2
that includes the quad-core ARM Cortex-A7 CPU and runs the
Raspbian Linux distribution. This processor has a 900 MHz
clock frequency.

With our experiments, we address the following questions:

1) What is the hardware utilization of our proposed imple-
mentation FPGA_C2?

2) How does FFPGA_C?2 perform against software imple-
mentation of Codec2 in RaspberryPi in terms of quality?

3) How fast are the major modules of FPGA_C2 com-
pared against the RaspberryPi implementation in terms
of time?

4) How do the major modules of FPGA_C2 compare
against RaspberryPi implementation in terms of clock
cycles?

5) What is the energy consumption of the FPGA_C2
compared to the RaspberryPi?

A. FPGA Resource Utilization

The resource utilization of the FPGA for our Codec2
encoder processing 150 FRAM Es (which is 3 seconds of
input speech) is shown in Table IIl. In this table, column
1 lists the FPGA resource type, column 2 shows the total
available resource count on the Cyclone IV EP4CE115F29C7,
column 3 shows the number of those resources used in our
synthesized design, and column 4 gives a utilization percent-
age of that resource (divide column 3 by column 2) for the
Cyclone FPGA. In the previous/section, we provided resource

TABLE I
RESOURCE UTILIZATION OF THE ENCODER BLOCKS

[Encoder Blocks | Modules & Sub-modules

[Logic Elements | Memory bits [Multipliers |

[FT [fft [1,053 [40,960 [16]
nlp 8,995 277,504 174
Pitch estimation fft_nlp 2,379 90,112 40
post_process_sub_multiples 1,591 0 28
. two_stage_pitch_refinement 5,182 0 40
Pitch Refinement hs_pitch_refinement 1,642 0 8
.. estimate_amplitudes 2,277 0 16
MBE Voicing test estimate_voicing_mbe 3933 16,384 0
. speech_to_uq_lIsps 18,287 15,712 138
LPC Analysis Tevinson_durbin 7,504 0 60
[LPC to LSP [Ipc_to_lsp [6,643 [0 [48]
.. encode_lsp_scalar 3,091 0 80
LSP Quantization quantise 2.187 0 0
encode_WoE 6,123 0 76
WO and - 2
Energy Quantization compute_weights 963 0 16
find_nearest_weighted 2,053 0 32

TABLE III
CYCLONE IV EP4CE115F29C7 RESOURCE UTILIZATION OF CODEC2
ENCODER TO PROCESS 150 FRAMES

Available Used Utilization
Logic Elements 114,480 60,890 53%
I/0 Pins 529 424 80%
Memory Bits 3,981,312 | 1,230,528 31%
9-bit DSPs 532 532 100%

utilization details for each of the design components. Note that
these utilization numbers can be improved by analyzing the
design and determining which functional units can be shared.
Also, in the last row of the table we show that 100% of the
multipliers are used on the FPGA, and to achieve this we
ensure that there are no multipliers that are converted to soft
logic multipliers by implementing some multiplier sharing to
achieve this for our particular Cyclone IV FPGA. We also
note that the high I/O pin usage is relative to the module that
implements the Codec2 and does not include a buffer memory
to store the speech, which requires large ports to pass the
speech samples in.

B. Qualitative and Quantitative Comparison of Encoding Re-
sults

Because the FPGA implementation uses different functional
units and different number representations, we expect that
there are differences in the quality of the compressed signals
that might degrade the functionality of the encoder. In this
section, we do a qualitative comparison and an error bit-rate
comparison of our implementation to the software version.

The module codec2_encoder_2400 processes 900 bytes of
the input data, which contains 150 frames and gives an
encoded output of 7200 bits (2400 bits/s). The output bits from
the Verilog module are copied to a “.bit” file. This encoded
file is then decoded using the software version of Codec2

decoder running on a Linux system to generate a “.raw” file.
Finally, the decoded “.raw” file from codec2_encoder_2400 is
compared with the decoded file of the same input data from
codec2 software running on a Linux system.

We took two samples of speech to verify our Codec2
written in Verilog. The speech samples are “htsla.raw” and
“hts2a.raw”, which are male and female voice samples that
contain 3-seconds of speech (150 frames). When listening to
the decoded samples of the encoded bits from the Verilog
module, they are intelligible when compared to the original
samples. The source code and the speech files are uploaded
on our GitHub repository for others to listen to [23].

Figures 5 show the Codec2 output of the speech samples
“htsla.raw” when processed on the software version. Figures 6
show the Codec2 output from the software Codec2 processing
the encoded bits from Verilog implementation of the Codec2
encoder. We have stacked the software and hardware figures
on top of each other so the reader can do an easy visual
comparison of the sound waveforms.

Our design loses some accuracy in the 16-bit fractional part
of the fixed-point representations while performing repetitive
multiplications and additions in the modules for Fourier Trans-
form and auto-correlation. So, for each frame of encoded data,
which is 48 bits, we can see that some bits are off from the
expected encoded bits in each frame. The average number of
bits that vary per frame is 6.55 bits/frame. The bit error rate
for 3 seconds of input data (900 bytes) is 13.6%. Note that
this error rate is a direct comparison between the software
approach and the hardware approach where the hardware
incurs more errors due to the number representation choice.
Note, however, that as demonstrated in the cognitive results,
the speech is still recognizable.

C. Performance Results

For this analysis, we compare the software and hardware
implementations in terms of speed. As mentioned, the clock

frequency of the FPGA is 50 MHz, while the clock frequency
of the ARM processor on the RaspberryPi is 900 MHz. So,
in terms of clock speed, the processor is 18 times faster than
the FPGA we are using. However, a hardware implementation
is customized for the application, and it may outperform the
MiCroprocessor.

In the Verilog implementation, the time taken to process 3s
of input speech by the Codec2 encoder is calculated by using
clock tick counters to record the number of clock cycles for the
execution of the codec2_encoder_2400 module. Then, given
the FPGA’s 50 MHz clock, the counter variable multiplied by
20 ns gives the execution time for processing 3s input data.
When we run the same encoder block to process the same
input data of 3s in RaspberryPi 2, we use the “system time” to
compute internal timing results [24]. These two measurements
allow for this comparison.

Since the modules for the other encoder blocks of LPC
Analysis, LPC to LSP, LSP Quantization, Wo & energy
Quantization execute faster in FPGA C2 when compared to the
corresponding functions in ‘C’ processed on the ARM proces-
sor, we could see that the module codec2_encoder_one_frame
which processes one FRAME of input, executes faster on the
FPGA compared to the Arm processor.

The time of execution to process 150 FRAM ES on FPGA
is, currently, 3.4466 seconds with the 50 MHZ clock while
the time taken in RaspberryPi is 0.3319 seconds with a 900
MHz clock. When comparing the ratio of clocks to execute,
FPGA_C?2 implementation is 1.73 times faster than the
Codec2 encoder on RaspberryPi. If we have to speed up
the FPGA_C2 design further, we would need to pipeline
our architecture so that we can more quickly process the
computation. This is doable since there is little dependence
between frames that are processed.

D. Power Analysis

Our FPGA implementation is more efficient in terms of
clocks to process, but due to clock speed of the Cyclone IV the
execution time is a factor of ten slower than the RaspberryPi.
In this section, we look at the power consumption of the two
applications.

To estimate the power and energy consumption of Codec2
on a RaspberryPi, we use the estimates from Kaup et. al.
[25], which is for the RaspberryPi original model B. Their
CPU estimate at approximately 90% of utilization is close to
1.75 Watts. Therefore, the energy usage is 0.5808 joules for
the compression of the 3s frames to process. Note that this
estimation is just for the CPU and none of the RaspberryPi
system, which we will follow for our FPGA power analysis.

For our FPGA analysis, we use the power analyzer tool
available in Quartus with default estimation settings. The tool
reports a 203.52 milliWatt power consumption, and the total
energy to analyze the 3s of speech is 0.7013 joules. This is
greater than the energy consumption of the microprocessor
implementation.

C - Codec2 2400 bits/s hts1a_c2.raw

Twmé(s)

Amplitude

Fig. 5. Codec2 output of the htsla.raw processed in C

Verilog - Codec2 2400 bits/s hts1a_c2_verilog.raw

T\m:e(s)

Amplitude

Fig. 6. Codec2 output of the htsla.raw processed in Verilog

V. DISCUSSION

A. Analyzing our Results and Improvements

The hardware design, we have created, is 10 times slower
and consumes 1.2 times more power than the microprocessor
software-based system. We, however, are very satisfied with
these results as our hardware version is a direct conversion
of the C code and is a base hardware version that can then
be expanded on by other researchers. This means that it
would not be too difficult to improve our hardware version
to beat the head-on comparison to a microprocessor with
optimizations and improved hardware. Additionally, we note
that our processing time is right on the verge of being capable
of real-time processing (3.4466 seconds for 3 seconds of
speech audio).

In particular, there are two key techniques to improve our
system. First, by pipelining our design the time to process
the frames, arguably, decreases by a factor of the number of
pipeline stages. This is, relatively, easy with FPGAs since flip-
flops are in abundance due to the FPGA architecture, and with
just two stages we would be able to encode the design in
real-time. Additionally, pipelining will, likely, improve energy
consumption [26].

Another approach to improving the hardware implementa-
tion is using a better FPGA as the one used in this analysis
is an older FPGA as that is what we have available. We
could, easily, improve both device and increase clock speed to
improve the processing time. Energy consumption will remain
constant other than the change in the power properties of the
devices.

B. Implementing other Codec2 modes

Codec2 operates on different compression rates of 3200,
2400, 1600, 1400, 1300, 1200, 700, and 450 bit/s. We chose
to implement Codec2 encoder operating at 2400 bits/s because
of the following reasons.

1) The other available open-source speech Codecs are
MELP, AMBE, and LPC-10. They operate in the range
of 2000 to 2400 bits/s. So, the MODE?2400 of the
FPGA_C2 would be much suitable if we want to
compare the hardware implementations of other Codecs.

2) The software implementation of M O D E2400 has most
of the functions which can be reused for the other
modes lower than M O D E2400. So, building the Verilog
modules for
MODE?2400 allows having most modules that can be
utilized while implementing the Codec2 encoder in other
modes. The list of modules to be altered is discussed
below.

As our work is based on the M OD E2400, some modifica-
tions should be taken to convert to other modes in the Codec2.
The Verilog modules for the encoder blocks such as FT, Pitch
estimation, Pitch Quantization, MBE Voicing test, LPC anal-
ysis, and LPC to LSP can be reused when converting to other
bit rates. Also, the IP cores from the “OpenCores” and the
custom-built cores can be reused without any modifications.
All the custom-built IP Cores have parameters that can be
altered to any other bit-width of the fixed-point representation.

The significant changes will focus on a subset of modules,
including LSP Quantization, Wo, and Energy Quantization
blocks, which must be created according to the C imple-
mentations for each mode. In each of these cases, it took
approximately 15 days to implement these cores, and we
would expect similar design time to make new ones with a
slight reduction given that our implementations could be used
as templates.

VI. CONCLUSIONS

In this work, we have provided a low-level implemen-
tation of the Codec2 in Verilog HDL implementation. We
implemented this design on an Intel FPGA and provided
implementation results for the resource consumption, speed,
and power consumption comparing some of these results to
an implementation on a RaspberryPi. Our main interest was
to provide this design as an open-source hardware version for
other researchers and determine what performance a simple
hardware version would have to the software implementation.
Our design is available at: https://github.com/santhiyaskumar/
FPGA_Codec2Encoder.

REFERENCES

[11 H. Shafagh, L. Burkhalter, A. Hithnawi, and S. Duquennoy, “Towards
blockchain-based auditable storage and sharing of iot data,” in Proceed-
ings of the 2017 on Cloud Computing Security Workshop. ACM, 2017,
pp. 45-50.

[2] D. Rowe, “Codec 2,” http://www.rowetel.com/?page_id=452, Accessed:
06-30-2019.

[3]

[4]
[5]

[6]
[7]
[8]

[9]

[10]
[11]
[12]

[13]

[14]

[15]

[16]

(17]

[18]
[19]
[20]
[21]

[22]

[23]
[24]

[25]

[26]

“Altera de2-115 development board,” https://www.intel.com/
content/www/us/en/programmable/solutions/partners/partner-profile/
terasic-inc-/board/altera-de2- 115-development-and-education-board.
html, Accessed: 07-07-2019.

“Cyclone IV FPGA;” https://www.intel.com/content/www/us/en/
products/programmable/fpga/cyclone-iv.html, Accessed: 07-07-2019.
A. Canis, J. Choi, M. Aldham, V. Zhang, A. Kammoona, J. H. An-
derson, S. Brown, and T. Czajkowski, “Legup: high-level synthesis
for fpga-based processor/accelerator systems,” in Proceedings of the
19th ACM/SIGDA international symposium on Field programmable gate
arrays, 2011, pp. 33-36.

“Lempel-ziv algorithm,” https://en.wikipedia.org/wiki/
Lempel-Ziv-Welch, Accessed: 07-07-2019.

“MP3,” https://en.wikipedia.org/wiki/MP3, Accessed: 07-07-2019.

P. Kavitha, “A survey on lossless and lossy data compression methods,”
International Journal of Computer Science & Engineering Technology,
vol. 7, no. 03, pp. 110-114, 2016.

J. Uthayakumar, T. Vengattaraman, and P. Dhavachelvan, “A survey
on data compression techniques: From the perspective of data quality,
coding schemes, data type and applications,” Journal of King Saud
University-Computer and Information Sciences, 2018.

“Melp codec,” https://www.vocal.com/speech-coders/melp/, Accessed:
07-07-2019.

“Speex : A free codec for free speech,” https://www.speex.org/, Ac-
cessed: 07-07-2019.

S. Gadd and T. Lenart, “A hardware accelerated mp3 decoder with
bluetooth streaming capabilities,” Master of science Thesis, 2001.

S. Hong, B. Park, Y. Song, H. See, J. Kim, H. Lee, D. Kim, and M. Song,
“A full accuracy mpegl audio layer 3 (mp3) decoder with internal data
converters,” in Proceedings of the IEEE 2000 Custom Integrated Circuits
Conference (Cat. No. 00CH37044). 1EEE, 2000, pp. 563-566.

L. Santos, E. Magli, R. Vitulli, J. F. Lopez, and R. Sarmiento, “Highly-
parallel gpu architecture for lossy hyperspectral image compression,”
IEEE Journal of Selected Topics in Applied Earth Observations and
Remote Sensing, vol. 6, no. 2, pp. 670-681, 2013.

M. Koushik, S. Shivanagi, J. Qumar, J. Yadav, and D. Saravanan,
“Implementation of melp encoder on zynq fpga using hls,” in 2017
International Conference on Current Trends in Computer, Electrical,
Electronics and Communication (CTCEEC). 1EEE, 2017, pp. 87-91.
K. Mahawar, V. Kumar, and H. Gupta, “Design and implementation
of ambe based voice codec module over custom fpga platform,” in
2012 International Conference on Computing, Communication and
Applications. 1EEE, 2012, pp. 1-5.

S. Wisayataksin, “An Efficient Hardware Architecture of Codec2 Low
Bit-rate Speech Decoder,” in 2019 5th International Conference on
Engineering, Applied Sciences and Technology (ICEAST). 1EEE, 2019,
pp. 1-4.

“Codec2 software,” https://svn.code.sf.net/p/freetel/code/codec2/
branches/, Accessed: 01-12-2019.

“Fixed-point Math Library,” https://opencores.org/projects/verilog_
fixed_point_math_library, Accessed: 07-07-2019.

“Newton-Raphson Algorithm,” https://en.wikipedia.org/wiki/Division_
algorithm, Accessed: 07-07-2019.

“CORDIC Algorithm,” https://people.sc.fsu.edu/~jburkardt/cpp_src/
cordic/cordic.html, Accessed: 07-07-2019.

“Signal Tap Logic Analyzer,” https://www.intel.com/content/dam/
www/programmable/us/en/pdfs/literature/ug/signal.pdf, Accessed: 01-
17-2019.

S. S. Kumar, “Verilog Codec2,” https://github.com/santhiyaskumar/
FPGA_Codec2Encoder, 2020.

“sys/time.h - Time types,” http://manpages.ubuntu.com/manpages/trusty/
man7/sys_time.h.7posix.html, Accessed: 01-17-2019.

F. Kaup, P. Gottschling, and D. Hausheer, “Powerpi: Measuring and
modeling the power consumption of the raspberry pi,” in 39th Annual
IEEE Conference on Local Computer Networks. 1EEE, 2014, pp. 236—
243.

S. J. Wilton, S.-S. Ang, and W. Luk, “The impact of pipelining on
energy per operation in field-programmable gate arrays,” in International
Conference on Field Programmable Logic and Applications. Springer,
2004, pp. 719-728.

