VerilogTown: Cars, Crashes and Hardware Design

Lindsay Grace Peter Jamieson Naoki Mizuno
American University Miami University Miami University
Washington, DC, USA Oxford, OH, USA Oxford, OH, USA
Grace(@american.edu Jamiespa@miamioh.edu e-mail address
Boyu Zhang
Miami University
Oxford, OH, USA

e-mail address

ABSTRACT

VerilogTown is a game about cars, crashes and hardware
design. The game is designed to help teach and practice the
hardware description language, Verilog. The game uses the
metaphor of traffic signals to help players understand and
practice the code needed to implement combinational and
sequential logic in digital circuits. Borrowing from the
emerging space of human computation games, player
solutions in the games can be directly transferred to
embedded system for real world use.

Author Keywords
Games and learning; synthesizable circuits; FPGA; ASIC;
Verilog; hardware description languages.

ACM Classification Keywords
H.5.m. Information interfaces and presentation

OVERVIEW

Understanding the complex logic needed to code Verilog
can be challenging for many students. Much of the
research in employing the power of games to teach code has
focused on traditional software programming. While the
benefits of such work have been discussed, there is little
being done for the even more complex space of hardware
design. As physical computing interests [1] increase and as
the demand for well trained engineers continue [5], the
demand for tools to help engage learners in hardware are
expected to increase[8].

VerilogTown seeks to support this need by providing a very
simple set of tools for practicing both combinational and
sequential logic in hardware description languages. While
many software developers are familiar with object oriented
and procedural development models, fewer are familiar

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the Owner/Author.

Copyright is held by the owner/author(s).

ACE '15, November 16-19, 2015, Iskandar, Malaysia
ACM 978-1-4503-3852-3/15/11.
http://dx.doi.org/10.1145/2832932.2832936

with the circuit theory behind combinational and sequential
logic. These circuit theory concepts are essential to
developing solutions in Verilog. Solutions encoded in
Verilog can be use in FPGAs (Field Programmable Gate
Arrays), ASICs (Application Specific Integrated Chips), or
other digital/analog silicon technologies including creating
a processor (a.k.a. a computer).

Combinational logic is continuously processed. It is time
independent logic without the ability to store state. The
common analogy for combinational logic is water where
water is never stopped and always flows.

Sequential logic, on the other hand is controlled by a clock
which serves as a metronome of the circuit. In sequential
logic, the present state of the logic input and the sequence
of inputs are a factor. Where combinational logic is a
stateless flow of water, sequential logic is a flowing water
stopped by a dam then released on every tick of the
metronome. In the most base terms, sequential logic is
combinational logic with state.

VerilogTown shown in figure 1, takes this analogy and
adapts it to the flow of traffic. Players must design logic
solutions to prevent the flow of traffic from causing
crashes. Players do so by managing traffic signals. To test

Figure 1. Verilogtown screenshot, depicting gameplay with
varied land and water vehicles.

their solution, players write Verilog and watch the resulting
traffic flow. Their goal is to get all of the vehicles through
traffic without a crash. Players can then optimize their
solutions, creating more efficient solutions while playing.

The game includes a Verilog editor, templates, and 10 logic
puzzles. The idea is to wrap the challenge of learning
Verilog with the pleasures of a playful experience. From the
literature [2] it is clear that such efforts should encourage
experimentation, learner persistence and focus. The game is
implemented in Java and may be played on any Windows,
Linux, or Mac OS machine.

This game takes as its motivation the previous successes of
environments like Scratch [7] and LOGO [3]. It extends
that precedent by applying the real world applicability of
human computation games [6] to this classroom tool.

GAME PLAY

Players are presented with one simple goal — get the
vehicles on the map to their destination without crashing.
Much like real world traffic management, some solutions
are better than others. If players choose to hold traffic too
long, the logic is inefficient. If players choose to move
traffic poorly, there will be crashes. Each level contains an
ever increasing set of challenges circuit code. Players can
choose to implement a combinational or sequential logic
solution for each of the problems.

To play, players choose an intersection map of varying
complexity. The simplest maps have but a few traffic
signals and limited traffic, the most complex have up to 10
intersections to manage. Figure 2 demonstrates the
gameplay phases and complexity.

i WA
i A

inm- -

Figure 2. Screenshots from the game. Section A demonstrates
a simple, single car intersection. In B, multiple cars come to
an intersection with the possibility of collision. C
demonstrates a complex 10 intersection puzzle.

The player must design and implement logic for each of the
traffic signals in their map. A simple double click launches
the embedded Verilog editor as shown in figure 3. Players
can use the embedded editor which provides typical editing
functions (e.g. undo, execute, save) or they can paste their
solutions as text from another editor.

Once a set of logic is completely designed, players simply
return to the simulation window to watch their results
unfold. Cars start moving, traffic jams occure or traffic
flows freely based on the code behind each traffic
managing module the player has created.

Once complete, the players are presented with basic
information about the number of crashes (which they can
witness), number of vehicles that have completed their
journey succsesfully, and the amount of time the solutions
took to execute as shown in figure 4.

Figure 3. The embedded Verilog editor. Section A is the
toolset for editing Verilog. Section B is the code input and
editing window. Section C is for error reporting.

Figure 4. Screenshots of player results

The game was designed to allow players to embrace failure
and practice without the frustration and anxiety common to
more serious applications. The game provides the typical
accoutrements expected of a casual game. While the game
is running, players can pause the traffic simulation to
understand what has gone right or wrong via the “P” key.
They can also seek functional help at any time via a simple

“H” key press. A retry option is also readily available for
retesting a solution to determine where it has failed or
succeeded. The complete diagram of available game
actions and results are shown in figure 5.

Start |«
A
Choose Level
Help Menu

ek o Verilog Editor
Prem
Y
Start Puue & Prem “H"
Simulation

Garoe firih.

Leaderboard

y r }
—[Try Again I l Next Level I Main Menu]—

N=N+1

Figure 5: Game process flow diagram

The benefits of framing hardware programming in this way
are twofold. First, players are allowed to witness the errors
or successes in their logic visually. While traditional
environments might simply demonstrate logic errors and
require users to evaluate why they are happening, the game
environment of Verilogtown is in itself a visualization of
the results of logic control. This bridges the obvious gap
between intended result and resulting scenario. Players see
what went wrong creating a more satisfying feedback loop
than traditional programming environments.

Secondly, as mentioned, the code generated within the
game is true Verilog. Players need only cut and paste the
code they generate within Verilogtown’s editor for use in
Verilog. This means that while people play and learn
within the Verilogtown environment, their code can be
easily transferred for use. This is an extension of human
computation play, as levels can be designed to address
specific logic sets for which multiple players can prescribe
varied Verilog solutions.

CONCLUSION

Individuals who are particularly fond of programming may
argue that all coding is a game, in much the same way that
individuals who are fond of any activity (e.g. art,
automobile maintenance, bookkeeping, etc) can find play
in it. The benefit of designed experiences like Verilogtown
is in their ability to bridge this play gap. The game employs
the cognitive task of programming a hardware description
language through a game. In short it facilitates the
interpretation of programming challenges as play by
employing functional Verilog to solve in-game problems.
As such the game represents an early foray in to combining
the benefits of human computation play to resolving non-

game problems. As mentioned, Verilog developed to solve
problems in Verilogtown can simply be cut and paste for
real world use. Ultimately the core goal of the project is
pedagogic — aiming to facilitate an interest in practicing the
unique logic challenges in programmable hardware using
Verilog.

The game is available at no cost to engineering faculty and
students for us in their classrooms by following the url
http://www.users.miamioh.edu/jamiespa/verilogTown/.

The game has been in development for over a year and has
been used as a successful practice tool in Miami University
second year undergraduate course. The researchers are now
making the game available to a wider audience to support
education.

ACKNOWLEDGMENTS

The game, VerilogTown, was created as institutional
collaboration between Miami University and the American
University Game Lab. The researchers would like to thank
the partnering institutions for their support.

REFERENCES

1. Blikstein, P. 2013. Gears of our childhood:
constructionist toolkits, robotics, and physical
computing, past and future. In Proceedings of the 12th
International Conference on Interaction Design and
Children (pp. 173-182). ACM.

2. Brown, S. L. 2009. Play: How it shapes the brain,
opens the imagination, and invigorates the soul.
Penguin.

3. Feurzeig, W. 1969. Programming-Languages as a
Conceptual Framework for Teaching Mathematics.
Final Report on the First Fifteen Months of the LOGO
Project.

4. Hayes, B., & Games, 1. 2008. Making computer games
and design thinking: A review of current software and
strategies. Games and Culture.

5. Langdon, D., McKittrick, G., Beede, D., Khan, B., &
Doms, M. 2011. STEM: Good Jobs Now and for the
Future. ESA Issue Brief# 03-11. US Department of
Commerce.

6. Quinn, A.J., & Bederson, B. B. 2011. Human
computation: a survey and taxonomy of a growing
field. In Proceedings of the SIGCHI conference on
human factors in computing systems (pp. 1403-1412).
ACM.

7. Resnick, M., Maloney, J., Monroy-Hernandez, A.,
Rusk, N., Eastmond, E., Brennan, K., ... & Kafai, Y.
2009. Scratch: programming for all. Communications
of the ACM, 52(11), 60-67.

8. Jamieson, Peter (2010). Arduino for teaching
embedded systems. are computer scientists and
engineering educators missing the boat?. Proc. of Intl.
Conf. on Frontiers in Education (FECS), 289-294.

http://www.users.miamioh.edu/jamiespa/verilogTown/

