
VerilogTown: Cars, Crashes and Hardware Design

Lindsay Grace

American University

Washington, DC, USA

Grace@american.edu

Peter Jamieson

Miami University

Oxford, OH, USA

Jamiespa@miamioh.edu

Naoki Mizuno

Miami University

Oxford, OH, USA

e-mail address

 Boyu Zhang

Miami University

Oxford, OH, USA

e-mail address

ABSTRACT

VerilogTown is a game about cars, crashes and hardware

design. The game is designed to help teach and practice the

hardware description language, Verilog. The game uses the

metaphor of traffic signals to help players understand and

practice the code needed to implement combinational and

sequential logic in digital circuits. Borrowing from the

emerging space of human computation games, player

solutions in the games can be directly transferred to

embedded system for real world use.

Author Keywords

Games and learning; synthesizable circuits; FPGA; ASIC;

Verilog; hardware description languages.

ACM Classification Keywords

H.5.m. Information interfaces and presentation

OVERVIEW
Understanding the complex logic needed to code Verilog

can be challenging for many students. Much of the

research in employing the power of games to teach code has

focused on traditional software programming. While the

benefits of such work have been discussed, there is little

being done for the even more complex space of hardware

design. As physical computing interests [1] increase and as

the demand for well trained engineers continue [5], the

demand for tools to help engage learners in hardware are

expected to increase[8].

VerilogTown seeks to support this need by providing a very

simple set of tools for practicing both combinational and

sequential logic in hardware description languages. While

many software developers are familiar with object oriented

and procedural development models, fewer are familiar

with the circuit theory behind combinational and sequential

logic. These circuit theory concepts are essential to

developing solutions in Verilog. Solutions encoded in

Verilog can be use in FPGAs (Field Programmable Gate

Arrays), ASICs (Application Specific Integrated Chips), or

other digital/analog silicon technologies including creating

a processor (a.k.a. a computer).

Combinational logic is continuously processed. It is time

independent logic without the ability to store state. The

common analogy for combinational logic is water where

water is never stopped and always flows.

Sequential logic, on the other hand is controlled by a clock

which serves as a metronome of the circuit. In sequential

logic, the present state of the logic input and the sequence

of inputs are a factor. Where combinational logic is a

stateless flow of water, sequential logic is a flowing water

stopped by a dam then released on every tick of the

metronome. In the most base terms, sequential logic is

combinational logic with state.

VerilogTown shown in figure 1, takes this analogy and

adapts it to the flow of traffic. Players must design logic

solutions to prevent the flow of traffic from causing

crashes. Players do so by managing traffic signals. To test

Permission to make digital or hard copies of part or all of this work for

personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. Copyrights for third-

party components of this work must be honored. For all other uses, contact
the Owner/Author.

Copyright is held by the owner/author(s).
ACE '15, November 16-19, 2015, Iskandar, Malaysia

ACM 978-1-4503-3852-3/15/11.

http://dx.doi.org/10.1145/2832932.2832936

Figure 1. Verilogtown screenshot, depicting gameplay with

varied land and water vehicles.

their solution, players write Verilog and watch the resulting

traffic flow. Their goal is to get all of the vehicles through

traffic without a crash. Players can then optimize their

solutions, creating more efficient solutions while playing.

The game includes a Verilog editor, templates, and 10 logic

puzzles. The idea is to wrap the challenge of learning

Verilog with the pleasures of a playful experience. From the

literature [2] it is clear that such efforts should encourage

experimentation, learner persistence and focus. The game is

implemented in Java and may be played on any Windows,

Linux, or Mac OS machine.

This game takes as its motivation the previous successes of

environments like Scratch [7] and LOGO [3]. It extends

that precedent by applying the real world applicability of

human computation games [6] to this classroom tool.

GAME PLAY

Players are presented with one simple goal – get the

vehicles on the map to their destination without crashing.

Much like real world traffic management, some solutions

are better than others. If players choose to hold traffic too

long, the logic is inefficient. If players choose to move

traffic poorly, there will be crashes. Each level contains an

ever increasing set of challenges circuit code. Players can

choose to implement a combinational or sequential logic

solution for each of the problems.

To play, players choose an intersection map of varying

complexity. The simplest maps have but a few traffic

signals and limited traffic, the most complex have up to 10

intersections to manage. Figure 2 demonstrates the

gameplay phases and complexity.

The player must design and implement logic for each of the

traffic signals in their map. A simple double click launches

the embedded Verilog editor as shown in figure 3. Players

can use the embedded editor which provides typical editing

functions (e.g. undo, execute, save) or they can paste their

solutions as text from another editor.

Once a set of logic is completely designed, players simply

return to the simulation window to watch their results

unfold. Cars start moving, traffic jams occure or traffic

flows freely based on the code behind each traffic

managing module the player has created.

Once complete, the players are presented with basic

information about the number of crashes (which they can

witness), number of vehicles that have completed their

journey succsesfully, and the amount of time the solutions

took to execute as shown in figure 4.

The game was designed to allow players to embrace failure

and practice without the frustration and anxiety common to

more serious applications. The game provides the typical

accoutrements expected of a casual game. While the game

is running, players can pause the traffic simulation to

understand what has gone right or wrong via the “P” key.

They can also seek functional help at any time via a simple

Figure 2. Screenshots from the game. Section A demonstrates

a simple, single car intersection. In B, multiple cars come to

an intersection with the possibility of collision. C

demonstrates a complex 10 intersection puzzle.

Figure 4. Screenshots of player results

Figure 3. The embedded Verilog editor. Section A is the

toolset for editing Verilog. Section B is the code input and

editing window. Section C is for error reporting.

“H” key press. A retry option is also readily available for

retesting a solution to determine where it has failed or

succeeded. The complete diagram of available game

actions and results are shown in figure 5.

Figure 5: Game process flow diagram

The benefits of framing hardware programming in this way

are twofold. First, players are allowed to witness the errors

or successes in their logic visually. While traditional

environments might simply demonstrate logic errors and

require users to evaluate why they are happening, the game

environment of Verilogtown is in itself a visualization of

the results of logic control. This bridges the obvious gap

between intended result and resulting scenario. Players see

what went wrong creating a more satisfying feedback loop

than traditional programming environments.

Secondly, as mentioned, the code generated within the

game is true Verilog. Players need only cut and paste the

code they generate within Verilogtown’s editor for use in

Verilog. This means that while people play and learn

within the Verilogtown environment, their code can be

easily transferred for use. This is an extension of human

computation play, as levels can be designed to address

specific logic sets for which multiple players can prescribe

varied Verilog solutions.

CONCLUSION

Individuals who are particularly fond of programming may

argue that all coding is a game, in much the same way that

individuals who are fond of any activity (e.g. art,

automobile maintenance, bookkeeping, etc) can find play

in it. The benefit of designed experiences like Verilogtown

is in their ability to bridge this play gap. The game employs

the cognitive task of programming a hardware description

language through a game. In short it facilitates the

interpretation of programming challenges as play by

employing functional Verilog to solve in-game problems.

As such the game represents an early foray in to combining

the benefits of human computation play to resolving non-

game problems. As mentioned, Verilog developed to solve

problems in Verilogtown can simply be cut and paste for

real world use. Ultimately the core goal of the project is

pedagogic – aiming to facilitate an interest in practicing the

unique logic challenges in programmable hardware using

Verilog.

The game is available at no cost to engineering faculty and

students for us in their classrooms by following the url

http://www.users.miamioh.edu/jamiespa/verilogTown/.

The game has been in development for over a year and has

been used as a successful practice tool in Miami University

second year undergraduate course. The researchers are now

making the game available to a wider audience to support

education.

ACKNOWLEDGMENTS

The game, VerilogTown, was created as institutional

collaboration between Miami University and the American

University Game Lab. The researchers would like to thank

the partnering institutions for their support.

REFERENCES

1. Blikstein, P. 2013. Gears of our childhood:

constructionist toolkits, robotics, and physical

computing, past and future. In Proceedings of the 12th

International Conference on Interaction Design and

Children (pp. 173-182). ACM.

2. Brown, S. L. 2009. Play: How it shapes the brain,

opens the imagination, and invigorates the soul.

Penguin.

3. Feurzeig, W. 1969. Programming-Languages as a

Conceptual Framework for Teaching Mathematics.

Final Report on the First Fifteen Months of the LOGO

Project.

4. Hayes, B., & Games, I. 2008. Making computer games

and design thinking: A review of current software and

strategies. Games and Culture.

5. Langdon, D., McKittrick, G., Beede, D., Khan, B., &

Doms, M. 2011. STEM: Good Jobs Now and for the

Future. ESA Issue Brief# 03-11. US Department of

Commerce.

6. Quinn, A. J., & Bederson, B. B. 2011. Human

computation: a survey and taxonomy of a growing

field. In Proceedings of the SIGCHI conference on

human factors in computing systems (pp. 1403-1412).

ACM.

7. Resnick, M., Maloney, J., Monroy-Hernández, A.,

Rusk, N., Eastmond, E., Brennan, K., ... & Kafai, Y.

2009. Scratch: programming for all. Communications

of the ACM, 52(11), 60-67.

8. Jamieson, Peter (2010). Arduino for teaching

embedded systems. are computer scientists and

engineering educators missing the boat?. Proc. of Intl.

Conf. on Frontiers in Education (FECS), 289-294.

http://www.users.miamioh.edu/jamiespa/verilogTown/

