CableS : Thread Control and Memory System
Extensions for Shared Virtual Memory Clusters

Peter Jamieson and Angelos Bilas

Department of Electrical and Computer Engineering
University of Toronto
Toronto, Ontario M5S 3G4, Canada
{jamieson,bilas}@eecg.toronto.edu

Abstract. Clusters of high-end workstations and PCs are currently used
in many application domains to perform large-scale computations or as
scalable servers for I/O bound tasks. Although clusters have many ad-
vantages, their applicability in new areas and especially in areas of com-
mercial applications has been limited. One of the main reasons for this
is the fact that clusters do not provide a single system image and thus
are hard to program. In this work we address this problem by providing
a single cluster image with respect to thread and memory management
to programmers. The main limitation of our system is that it does not
yet provide file system and networking support across cluster nodes. We
implement our system on a 16-processor cluster interconnected with
a low-latency, high-bandwidth system area network. We demonstrate
the versatility of our system with a wide range of applications. We show
that clusters can be used to support applications that have been written
for more expensive tightly—coupled systems, with very little effort on the
programmer side. Finally, we show that the overhead introduced by the
extra functionality of CableS affects the parallel section of applications
that have been tuned for the shared memory abstraction only in cases
where the data placement policy of the system results in improper place-
ment due to operating system limitations in virtual memory mappings
granularity.

1 Introduction and Background

Recently there has been progress in building high-performance clusters out of
high—end workstations and low-latency, high-bandwidth system area networks
(SANs). SANs, used as interconnection networks provide memory—to-memory
latencies of under 10us and bandwidth in the order of hundreds of MBytes/s . For
instance, the cluster we are developing at the University of Toronto uses Myrinet
as the interconnection network and currently provides one—way, memory—to—
memory latency of about 8us and bandwidth of about 120MBytes/s. Similar
clusters are being built at many other research institutions.

Moreover, the shared memory abstraction, is used in an increasing number of
application areas. Developers have been writing new applications for the shared

R. Eigenmann and M.J. Voss (Eds.): WOMPAT 2001, LNCS 2104, pp. 170-[I84] 2001.
© Springer-Verlag Berlin Heidelberg 2001

CableS : Thread Control and Memory System Extensions 171

address space abstraction and legacy applications are being ported to the same
abstraction as well. Finally, most vendors are designing both small-scale sym-
metric multiprocessors (SMPs) and large-scale, hardware cache-coherent dis-
tributed shared memory (DSM) systems, targeting both scientific and commer-
cial applications.

Shared memory clusters are an attractive approach to providing affordable
and scalable compute cycles and I/O. For this reason, there has recently been
a lot of work on designing efficient shared virtual memory (SVM) protocols for
such clusters [23T6J26/T3]. These protocols take advantage of features provided
by SANSs, such as low—latencies for short messages and direct remote memory
operations with no remote processor intervention [T2JT0J9], to improve system
performance and scalability [I6]. Providing a shared memory programming ab-
straction on clusters has made it easier to run applications that have been writ-
ten for more traditional, tightly—coupled multiprocessors (both shared bus and
distributed shared memory machines).

Recent work [23[[16J26] has shown that the performance of SVM clusters is
competitive for wide ranges of applications to more traditional, tightly—coupled
multiprocessors. For instance, the authors in [I6] find that a 64—processor cluster
offers, for most SPLASH-2 [24] applications (after a number of optimizations),
at least 50% of the performance offered by a 64—processor SGI Origin2000.

However, despite the many advantages of clusters over more traditional,
tightly—coupled scalable servers and the competitive performance they offer,
their use is not widespread, especially in areas of commercial applications. One
of the reasons is that despite the progress on the performance side, it still is a
very challenging task to port existing applications or to write new ones for the
shared memory programming APIs provided by clusters.

Although these APIs provide sufficient primitives to write parallel programs,
they also impose several restrictions: (i) Processes cannot always be created and
destroyed on the fly during application execution. (ii) Programmers allocate
shared memory only during program initialization and should not free memory
until the end of execution. (iii) In most shared memory clusters the synchro-
nization primitives supported are lock/unlock and barrier primitives. However,
more modern APIs support conditional waits as well as other primitives.

These limitations are not very important for large classes of scientific applica-
tions that are well structured. However, they pose important obstacles for using
clusters in areas of applications that exhibit a more dynamic behavior, such
as commercially—oriented applications. Thus, in many areas, traditional shared
memory multiprocessors are used because of their ability to support legacy ap-
plications with no or very few changes. Also, development of new applications
usually occurs on these architectures, since they provide APIs that pose fewer
restrictions to the programmer. In essence, current clusters that support shared
memory provide a very limited single system image to the programmer with
respect to process, memory management, and synchronization.

In order to overcome the above limitations and to provide a more complete
and functional single cluster image to the programmer, we design and implement

172 P. Jamieson and A. Bilas

a pthreads interface on top of our cluster. This allows existing pthreads programs
to run on our system with minor modifications. Programs can dynamically cre-
ate and destroy threads on our system, allocate global shared memory through-
out execution, and use all synchronization primitives specified by the pthreads
API. More specifically, our system, CableS (Cluster enabled threadS), provides:

Support for dynamic node and thread management: CableS allows
the application to dynamically create threads at any point during execution.
Currently, new threads are allocated to nodes with a simple, round—robin policy.
On the fly, the system performs all the necessary initialization to support the
pthreads APIL.

Support for dynamic memory management: CableS addresses a number
of issues with respect to memory management. (a) It provides all necessary
mechanisms to support different memory placement policies. Currently, CableS
supports first touch placement, but can be extended to support other policies as
well. (b) It provides the ability to allocate global, shared memory dynamically
at any time during program execution. (c) It deals with static global variables
in a transparent way.

Support for modern synchronization primitives: CableS supports the
conditional wait primitives.

The main limitation of CableS is that, although it provides a single system
image with respect to thread management, memory management, and synchro-
nization support, it does not yet include file system and networking support
across cluster nodes.

We demonstrate the viability of our approach and the versatility of our sys-
tem by using a wide range of applications: (a) We run existing pthreads applica-
tions with minor modifications. (b) We use a public-domain OpenMP compiler,
OdinMP [7], that translates OpenMP programs to pthreads programs for shared
memory multiprocessors and run the translated OpenMP programs on our sys-
tem. Our system supports the OpenMP programs with no modifications to the
OpenMP source and minor modifications to the pthreads sources. (¢) We provide
an implementation of the M4 macros for pthreads and we run some SPLASH-2
applications.

We also show that the overhead introduced by the extra functionality affects
the parallel section of applications that have been tuned for the shared memory
abstraction only in cases where the data placement policy of the system results
in improper placement due to operating system limitations in virtual memory
mappings granularity. In the SPLASH-2 applications most overhead is intro-
duced during application initialization and termination, whereas the execution
time of the parallel section is only affected by the data placement, currently
determined by our first touch policy.

The paper is organized in the following sections. Section P introduces our
platform and current architectural considerations for modern clusters. Section Bl
describes the design of CableS. Section[d] presents our experimental results. Sec-
tion [§] presents related work and Section [f] discusses our high level conclusions.

CableS : Thread Control and Memory System Extensions 173

2 Modern Clusters and System Area Networks

Nodes in modern clusters are usually interconnected with low—latency, high—
bandwidth SANs that support user—level access to network resources [12J9//5].
By allowing users to directly access the network without operating system in-
tervention, these systems dramatically reduce latencies compared to traditional
TCP/IP based local area networks. Moreover, to further reduce latencies in
SANs, direct memory operations are usually supported; reads and writes to re-
mote memory are performed without remote processor intervention.

This mechanism provides fast access to remote memory within a cluster.
However, there are a number of limitations associated with these operations and
with modern SANs in general: (i) Connection establishment requires mapping
of remote memory locally, which is an expensive operation. This operation usu-
ally sets up some form of page table on the network interface card (NIC) that
allows it to access remote memory. (ii) The amount of remote memory that can
be mapped is limited. (iii) To provide asynchronous communication primitives,
most communication layers use a notification mechanism. Notifications use the
interrupt mechanism provided by the operating system and are usually very
expensive compared to direct remote operations.

The specific system we use consists of a cluster of 8 2-way PentiumPro
SMP nodes interconnected with a Myrinet network. Each SMP is running Win-
dowsNT. The nodes in the system are connected with a low-latency, high—
bandwidth Myrinet SAN [5]. The software infrastructure in the system includes
a custom communication layer and a highly optimized SVM system.

The communication layer we use on top of Myrinet is a user-level communi-
cation layer, Virtual Memory Mapped Communication (VMMC) [2]9]. VMMC
provides both explicit, direct remote memory operations (reads and writes) and
notification—based send primitives.

The SVM protocol used is GeNIMA [16], which is a home-based, page-level
SVM protocol. The consistency model in the protocol is Release Consistency [11].
GeNIMA provides an API based on the M4 macros, which are extensively used
for writing shared memory applications in the scientific computing community.

3 System Design

CableS supports a full pthreads (POSIX threads IEEE POSIX 1003.1 [1]) API
which enables legacy shared memory applications written for traditional, tightly
coupled, hardware shared memory systems to run on shared memory clusters.
Within the pthreads API, CableS addresses the following issues: (i) It supports
the pthreads API. (ii) It provides support for dynamic global memory manage-
ment.

174 P. Jamieson and A. Bilas

3.1 Thread Management

Thread and node management is the core of the API in which a thread can be
created and administrated. The API also includes mechanisms to kill threads,
cancel threads, and store thread private data.

In a distributed environment, threads of execution need to be started and
administered on remote systems. For this purpose, CableS needs to maintain and
manage global state that stores location and resource information about each
thread in an application. Thus, CableS uses per application global state, called
the application control block (ACB). This state is updated by all nodes in the
system via direct remote operations as well as notification handlers.

CableS communication library, VMMC, provides communication primitives
that allow one node to perform reads and writes to another node’s memory
without interrupting the remote processor. CableS maintains the most up to
date system information on the first node where the application starts (master
node). To ensure consistency of the ACBs, updates are performed either by the
master node through remote handler invocations, or by node update regions in
which the system guarantees that the node is the exclusive writer.

The thread management component of the pthreads library is hinged around
thread creation. Thread creation in CableS involves one of three possible cases:
(i) Create a thread on the local node. (ii) Create a thread on a remote node that
is not used by this application. This operation is called attaching a remote node
to the application. (iii) Create a thread on an already attached remote node.

Local thread creation is equivalent to a call to the local operating system
to create a thread. CableS creates remote threads by a combination of direct
memory operations and remote handler invocation; thus, remote thread creation
is expected to be a fairly expensive operation.

When CableS needs to attach a new node to the application, the master node
M creates a remote process on the new node N. Node N, starts executing the
initialization sequence and performs all necessary mappings for the global shared
memory that is already allocated on M. N then retrieves global state information
from M including shared memory mappings and sends an initialization acknowl-
edgment back to M. M broadcasts to all other nodes in the system that N exists
and that they can establish their mappings with N. At the end of this phase,
node N has been introduced into the system and can be used for remote thread
creations.

The remaining thread management operations involve mostly state manage-
ment, mainly, through direct reads and writes to global state in the ACB.

3.2 Synchronization Support

The pthreads API provides two synchronization constructs mutezes and condi-
tions. Current SVM APIs that mostly target compute-bound parallel applica-
tions provide two other synchronization primitives, locks and barriers.

Since mutexes and locks are very similar, we use the underlying SVM lock
mechanism to provide mutexes in the pthreads API. For performance reasons,

CableS : Thread Control and Memory System Extensions 175

locks are implemented in SVM as spin locks, and we maintain this implementa-
tion in CableS.

The pthreads condition is a synchronization construct in which a thread waits
until another thread sends a signal. As with mutexes, conditions can be imple-
mented either by spinning on a flag or by suspending the thread on an operating
system event. Although implementations that use spinning consume processor
cycles, they are more common in parallel systems to reduce wake—up latency.
For this reason, our first implementation of pthreads conditional wait primitives
uses spinning.

Global synchronization (barriers) can be implemented in pthreads with mu-
texes (or conditions). However, to support legacy parallel applications efficiently
we extend the pthreads synchronization to support a barrier operation.

3.3 Memory Subsystem

Current System Limitations. Modern SANs that support direct remote
memory operations, such as remote read and write operations require some form
of memory registration to avoid remote processor intervention and interrupts. In
these mechanisms, a node maps one or more regions of remote memory to the
local network interface card (NIC) and it performs direct operations on these re-
gions without requiring processor intervention on the remote side. This mapping
operation is called registration and usually requires work at both the sending as
well as the receiving NIC. SVM systems on clusters interconnected with SANs
take advantage of these features to reduce the overhead associated with prop-
agation and obtaining updates of shared data [23)[16]. For this purpose, they
perform all necessary registration operations at initialization time. This results
in a number of limitations:

All shared memory has to be allocated at initialization time, since all memory
registration operations happen at initialization.

In most SANs today [8I12]9] there is a limit (a) on the number of memory
regions and (b) on the total amount of memory that can be registered on the NIC.
Each page in the working set of each process should be placed, for performance
reasons, on the node where the process runs. The registration limitations conflict
with this requirement.

On today’s systems there exist three possible solutions to this problem: (i)
Shared pages could be grouped in regions and mapped together to solve regis-
tration limitations. In this case, pages in the working set of a process will have
their primary copies in remote nodes resulting in excessive network traffic and
performance degradation. (ii) Place the primary copies of pages in the working
set on the node where the process runs. In this way the registration limitations
may be violated since there will be a large number of non-contiguous memory
regions that have to be registered. (iii) The many non-contiguous regions could
be registered in one operation, including the gaps between regions. However, this
results in registering essentially all the shared address space. This is not feasible
due to the total amount of memory which can be registered.

176 P. Jamieson and A. Bilas

In most SVM systems today, global static variables are not included in the
shared address space. These are global variables that are declared statically in the
user program. In the threads programming model, these variables are visible to
all threads; however, this is not true in most SVM systems. The compiler/linker
automatically allocates these variables to a designated part of the virtual address
space. Since this part of the address space is not under the control of the shared
memory protocol, static global variables can not be shared across nodes. This
imposes additional challenges in the process of porting existing shared memory
applications to clusters.

Effects on System API. The above limitations impact the API provided
to users in many ways. To support a global shared address space on a cluster
without hardware support, most systems today perform the following steps:

1. Start and initialize all the nodes that will be used to run the application at
the same time.

2. Allocate a region of the virtual address space on each node. This step is
usually fairly simple, since it involves using a system call to reserve part of
the application virtual address space.

3. Determine which node will maintain the primary copy of each portion of the
shared memory.

4. Establish communication—layer mappings between the primary copy of this
region and the same region on all other nodes. These mappings are estab-
lished by filling in the necessary information in the NIC page table.

5. Provide the application on each node with a convenient interface to the
shared address space. This must consider the current restrictions on the
usage of the shared address space: applications cannot use static global vari-
ables, nor allocate/deallocate shared memory after thread creation.

Proposed Solution. Existing systems deal with these issues by imposing API
limitations that make it easy to avoid the related problems. The result is inflex-
ible systems that are not easy to program. CableS deals with most of the issues
above as follows.

Shared memory allocation and registration: Initially, one contiguous part of the
physical address space in each node is used to hold the primary copies of shared
pages that will be allocated to this node. This part of the physical address space
is always pinned (can’t swap out of RAM), since it will be accessed remotely by
other nodes. The primary copies are mapped twice to the virtual address space of
the process. One mapping is to a contiguous part of the virtual address space and
is used only by the protocol . The second mapping is used by the application to
access the shared data. For this mapping, the home pages are divided in groups
of fixed size (in the current system 64 K-Bytes) and are mapped to arbitrary
locations in the virtual address space of the process. It is important to note that
these locations are not necessarily contiguous.

CableS : Thread Control and Memory System Extensions 177

As the application requires more shared memory, it first allocates a region
in the global virtual address space. Then, it determines which node will hold
the primary copies of these pages according to some placement policy (currently
first touch).

When a home page is touched: (a) The home node extends the home pages
section and registers the additional pages with the NIC. Then, it maps the
virtual memory region to the newly allocated home pages. As the primary copies
of shared pages are placed in different nodes, the home pages portion of the
physical address space is mapped to non-contiguous regions of the shared virtual
address space in the home node. (b) Every other node in the system, registers
the newly allocated virtual memory region with the NIC so that each node can
fetch updates from the primary copies and rely on the OS to allocate arbitrary
physical frames for these pages.

First touch policy: Implementing a first touch policy requires that the system
delays binding of virtual addresses until the region is first read or written. Ca-
bleS maintains information about each memory segment allocated in the global
directory. During execution, when a node touches the segment, it uses the global
directory to identify if the segment has been touched by anyone else. If it has,
then the segment is registered with the NIC and is mapped to the correspond-
ing region on the home node. If this is the first touch to the region, then the
node becomes the home by updating the global information and by appropri-
ately mapping the physical pages to its shared virtual address space so that the
application can use it. Synchronization of the global information and ordering
simultaneous accesses to a newly allocated region is facilitated through system
locks.

Global static variables: CableS deals with global static variables in a transpar-
ent way. In current SVM systems and related APIs, such as M4, global static
variables can only be pointers, allocated explicitly by the programmer. Explicit
allocation greatly simplifies management of these variables, since the system can
allocate them in designated areas of the shared address space [However, this
imposes a burden on the programmer, since they need to allocate each global
variable explicitly. Moreover, these variables greatly hinder porting of existing
pthreads applications to clusters.

CableS uses a type quantifier to allocate these global variables in a special
area within the executable image. At application initialization, the first node in
the system becomes the primary copy for this region. All necessary mappings
are established to other nodes as they are attached to the application. Thus,
static global variables of arbitrary types can be shared among system nodes.

! This assumes that the designated part of the virtual address space for static variables
is the same in all processes. This is true in most systems today (or can be easily
enforced).

178 P. Jamieson and A. Bilas

3.4 Summary

CableS provides a shared memory programming model that is very similar to
a pthreads programming model for tightly—coupled shared memory multipro-
cessors, such as SMPs and hardware DSMs. To run any pthreads program on
CableS, the following modifications are required:

1. Determine if the program will perform correctly under a Release Consistency
memory model.

2. Add the pthread_start and pthread_end library calls.

3. Prefix all static variables that will be globally shared with the GLOBAL
identifier.

4. (OPTIONAL) Optimize the code so that threads touch data they require.

5. Link with CableS’ library.

4 Results

In this section we present three types of results: (i) We demonstrate that legacy
pthreads programs written for traditional hardware shared memory multipro-
cessors can run with minor modifications on CableS. (ii) As an extension of (i)
we show that OpenMP programs can be run by translating them to pthreads
programs by using a public domain OpenMP compiler, OdinMP [7]. (iii) We
provide an implementation of the M4 macros for pthreads and run a subset of
the SPLASH-2 applications.

4.1 Legacy pthreads Programs

We use the five simple steps, outlined above, to convert three publicly avail-
able pthreads programs for CableS. The programs are: (i) Prime number (PN),
which, as indicated by its name, computes all prime numbers in a user specified
range. (ii) Producer—consumer (PC), a producer—consumer program which runs
with two threads. (iii) Pipe (PIPE), which creates a threaded pipeline where
each element stage consists of a calculation. Next, we use OdinMP to compile
to pthreads three SPLASH-2 applications that have been written for OpenMP:
FFT, LU, and OCEAN.

Table [shows the pthreads programs which were run on CableS, and the
pthreads calls each of the programs make, along with the average execution time
of each pthreads functions. Note that PC only uses two threads; therefore, this
program runs on only one node.

Performance-wise, PC shows the approximate cost of local API operations.
PN, PIPE, and the OpenMP programs provide an indication of the average
execution time of remote operations in CableS. We see that local operations are
about three orders of magnitude faster than remote operations. With respect to
synchronization operations, conditional waits and mutex lock operations include
the cost of communication and the application wait time. For example, in PIPE
the condition is used by each stage of the pipe to wait for work. Therefore, a stage

CableS : Thread Control and Memory System Extensions 179

Table 1. Shows pthread programs with their respective pthread function calls and
execution times (in ms) for the basic API operations.

[PROGRAM [[C[J]L]Co|Ca[K[G][Cr [Lo | Un [Wa| Si [Br | Sp |

PN oleje| o | o e|2254| 23 | 2 |6154| - 1 [15677

PC olejo| o el 1.1 |0.05/0.005| 17 [0.042| - -
PIPE o (o @ e |[1008| 52 3 | 527 12 - 11249
OMP_FFT ||e]| |o| @ e (1235 54 | 0.52 |1382|0.146] 1.1 |12302
OMP_LU o (o @ e |1247|133| 1 327 (0.134|0.401|12412
OMP_OCEAN|| e| |o| ® e |1312] 49 2 1494 10.293(0.606|14222

LEGEND: C = pthread_create, J = pthread_join, L, = mutexes, Co = conditions, Ca
= thread cancel, K = thread specific information, G = program uses static global
variables Cr = create, Lo = mutex locks, Un = mutex unlock, Wa = condition wait,
Si = condition signal, Br = condition broadcast, Sp = spawn time.

in the pipe is dependent on the execution time of the previous stage. Condition
signals and broadcasts are much faster since these involve sending only small
messages to activate threads in remote nodes.

Table 2. Speedups for the three SPLASH-2 OpenMP programs

IPROGRAMHAL processors‘S processors‘lG processors

FFT 1.61 2.05 2.44
LU 3.17 3.71 7.10
OCEAN 1.33 1.43 1.92

Table Bl shows the speedups of the three OpenMP SPLASH-2 applications.
We do not directly compare these results with our M4 results since OdinMP
introduces overheads when translating OpenMP programs into pthreads. Also, we
have not modified the resulting pthreads programs for optimal data placement.

4.2 SPLASH-2 Applications

To investigate the overhead CableS introduces in applications which have been
tuned for the shared memory abstraction, we provided an implementation of the
M4 macros on CableS and run a subset of the SPLASH-2 applications on two
configurations: The original, optimized SVM system that we started from, GeN-
IMA [16], and CableS. In CableS we use the earlier introduced pthreads barriers,
as opposed to a mutex-based implementation of barriers which only uses native
pthreads calls. The motivation behind this extension is that the pthreads was not
designed for parallel applications which frequently require global synchroniza-

180 P. Jamieson and A. Bilas

]

Timeinms
Timein ms
Timeinms

]

54
o
5
5]
o
o
o
K-
5
o
o
5
5

Processors Processors Processors

(a) FFT (b) LU (c) Ocean

Fig. 1. SPLASH-2 M4 vs M4-pthread executions with 1, 4, 8 and 16processors. Solid
line is the M4 executions, and dashed line isM4-pthread executions

tion. For a better comparison, specific knowledge provided by the SPLASH-2
applications about global synchronization should be exploited in both systems.

The applications we use are: FFT [42425], LU [24J25], and OCEAN [6l22]
17]. Their common characteristic is that they are optimized to be single-writer
applications; meaning, a given word of data is written only by the processor
to which it is assigned. Given appropriate data structures, these applications
are single-writer at page granularity as well, and pages can be allocated among
nodes such that writes to shared data are almost all local. The applications have
different inherent and induced communication patterns [2414], which affect their
performance and the impact on nodes.

Figure [shows the execution times of each application in both system con-
figurations for 1,4,8, and 16 processors. We see that the current implementation
of the first touch placement in CableS. Although this implementation results in
similar speedup curves, it increases the absolute execution time in applications
where the 64-KByte mapping granularity imposed by the operating system re-
sults in improper data placement. In these applications, although the granularity
of sharing is still one page (4 KBytes), data is placed in nodes in chunks of 64
KBytes. This may result in additional diff computations, with more expensive
page faults and synchronization.

FFT incurs higher data wait time on the first node as shown in Figures[2-a
and 2b; this leads to higher barrier synchronization time. Although the main
data structures in FFT are placed properly by CableS, there are smaller data
structures that reside on node 0. The original system, however, allocated these
data structures in a round robin fashion. The reason for this difference is that
CableS performs first touch allocation, and since node 0 initializes these data
structures, all other nodes fetch from node 0. Each node in the system fetches
about 5200 pages while node 0 only fetches 3600. Given that in the current
VMMC implementation the incoming path has priority over the outgoing path,
remote requests for shared pages create contention in the I/O and memory bus
of node 0. This means page fetches incur higher delays resulting in high data

CableS : Thread Control and Memory System Extensions 181

wait times. Finally, the additional traffic on the memory bus of node 0 increases
memory overhead and affects compute time. One way to address this issue would
be to distribute all application data structures properly.

Given the large granularity in LU (Figures ¢ and [2-d), the 64-KByte map-
ping granularity is not an issue. In fact, the performance of the parallel section
is almost identical between the two configurations.

OCEAN (Figures [Zre{2H) incurs higher overheads due to the higher granu-
larity of data placement. The 64-Kbyte chunk size is a major data placement
issue since 16 contiguous pages must have the same home node. OCEAN does
not have large contiguous regions of data and suffers from misplaced pages. This
causes contention within the network which increases synchronization overheads
by about 139the average for locks and 106

5 Related Work

This work provides a pthreads API for a cluster interconnected with a SAN sim-
ilar to DSM-Threads [21]. This work targets the implementation of a pthreads
APT on clusters of workstations. CableS, however, deals thoroughly with out-
standing memory issues. The pthreads standard is defined in [I]. Most other
related work in the area has focused on the following four directions:

To improve the performance of SVM on clusters with SANs. There is a large
body of work in this category [23J18/16l26] . Our work relies on the experiences
gained in this area and builds upon it to extending the functionality provided
by today’s clusters.

To provide OpenMP implementations for clusters. Relatively, little work has
been done in this area. The authors in [19] provide an OpenMP implementation
based on TreadMarks. They convert OpenMP directly into TreadMark system
calls. They then compare the OpenMP programs to the native versions of the
same applications.

To provide a pthreads interface on hardware shared memory multiproces-
sors, either shared-bus or distributed shared memory. Most hardware shared
memory system and operating system vendors provide a pthreads interface to
applications [20]. In many systems, this is the preferred API for multithreaded
applications due to the portability advantages.

To provide a single system image on top of clusters. These projects focus
on providing a distributed operating system on top of clusters. The focus is
on providing an operating system that can manage all aspects of a cluster in
multitasking environments and not on parallel applications. Also, the authors
in [3] provide a Java Virtual Machine on top of clusters. This work focuses on
Java applications and uses the extra layer of the JVM to provide a single cluster
image. Our work is at a lower layer. For instance, a JVM written for the pthreads
API, such as Kaffe [15] could be ported to our system.

182 P. Jamieson and A. Bilas

20406 46406
8 1 5er0e § aei00
3 3
2 e 2 2006
& i
> >
2 500000 Y 1er06
0 0
o 1 2 3 4 5 & 7 o 1 2 3 4 5 6 7
Node Node
(a) FFT (b) FFT pthread
50406
Se+06
§ 106 g 40406
S s S ses
8 2406 T 20406
w w
16406 16406
0 0
o 1 2 3 4 5 6 7 o 1 2 3 4 5 6 71
Node Node
(c) LU (d) LU pthread
5e+06

Event Values
g g g
82 2

u

I3
=
5
8

Node: Node

(e) OCEAN (f) OCEAN pthread

Fig. 2. SPLASH-2 M4 and M4-pthread execution breakdowns on16 processors. For (a),
(b), (c), and (d) the lower boxes show compute time, the middle boxes show data time,
and the top boxes show barrier time. For (e) and (f) the lower boxes show compute
time, the next boxes show data time, the 2nd highest boxes show lock time, and finally,
the top boxes show barrier time

6 Conclusion

In this work we design and implement a system that provides a single system
image for SVM clusters. Our system supports the pthreads API and within this
API, provides dynamic thread and memory management as well as all syn-
chronization primitives. We show that this system is able to support pthreads
applications written for more tightly—coupled, hardware shared memory multi-
processors. We use a wide suite of programs to demonstrate the viability of our

CableS : Thread Control and Memory System Extensions 183

approach to make clusters easier to use in new areas of applications, especially
in areas that exhibit dynamic behavior.

Our results show that existing applications can run on top of CableS, and
applications tuned for performance on shared memory systems incur additional
overhead only when the 64-KByte granularity of mapping physical to virtual
memory results in a deviation from the first touch allocation and an improper
data placement. The rest of the overhead introduced by CableS is limited to the
initialization and termination sections of these applications.

Acknowledgments. We would like to thank Jeffrey Tang for his help with
fixing problems in the VMMC firmware and Reza Azimi for providing help with
extending the VMMC driver. Also, we would like to thank Anna Thelin for her
OpenMP SPLASH-2 code, and Mats Brorsson for his help in obtaining OdinMP
and OpenMP SPLASH-2 resources. Finally, Paul McHardy and Alexis Armour
for their insights on the paper.

References

1. International standard iso/iec 9945-1: 1996 (e) ieee std 1003.1, 1996 edition (incor-
porating ansi/ieee stds 1003.1-1990, 1003.1b-1993, 1003.1¢-1995, and 1003.1i-1995)
information technology — portable operating system interface (posix) — part 1: Sys-
tem application program interface (api) [c language].

2. J. S. ABilas, C Liao. Using network interface support to avoid asynchronous
protocol processing in shared virtual memory systems. In Proceedings of the The
26th International Symposium on Computer Architecture, Atlanta, Georgia, May
1998.

3. Y. Aridor, M. Factor, A. Teperman, T. Eilam, and A. Schuster. A high performance
cluster jvm presenting a pure single system image. In ACM Java Grande 2000
Conference, 2000.

4. D. H. Bailey. FFTs in External or Hierarchical Memories. Journal of Supercom-
puting, 4:23-25, 1990.

5. N. J. Boden, D. Cohen, R. E. Felderman, A. E. Kulawik, C. L. Seitz, J. N. Seizovic,
and W.-K. Su. Myrinet: A gigabit-per-second local area network. IEEE Micro,
15(1):29-36, Feb. 1995.

6. A. Brandt. Multi-level adaptive solutions to boundary-value problems. Mathemat-
ics of Computation, 31(138):333-390, April 1977.

7. C. Brunschen and M. Brorsson. Odinmp/ccp - a portable implementation of
openmp for c¢. The 1st European Workshop on OpenMP, 1999.

8. D. Cohen, G. G. Finn, R. Felderman, and A. DeSchon. The use of message-
based multicomputer components to construct gigabit networks. ACM Computer
Communication Review, 23(3):32-44, July 1993.

9. C. Dubnicki, A. Bilas, Y. Chen, S. Damianakis, and K. Li. VMMC-2: efficient
support for reliable, connection-oriented communication. In Proceedings of Hot
Interconnects, Aug. 1997.

10. D. Dunning and G. Regnier. The Virtual Interface Architecture. In Proceedings of
Hot Interconnects V Symposium, Stanford, Aug. 1997.

184

11.

12.

13.

14.

15.
16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

P. Jamieson and A. Bilas

K. Gharachorloo, D. Lenoski, and et al. Memory consistency and event ordering
in scalable shared-memory multiprocessors. In In 17th International Symposium
on Computer Architecture, pages 15-26, May 1990.

R. Gillett, M. Collins, and D. Pimm. Overview of network memory channel for
PCI. In Proceedings of the IEEE Spring COMPCON ’96, Feb. 1996.

L. Iftode, C. Dubnicki, E. W. Felten, and K. Li. Improving release-consistent
shared virtual memory using automatic update. In The 2nd IEEE Symposium on
High-Performance Computer Architecture, Feb. 1996.

L. Iftode, J. P. Singh, and K. Li. Understanding application performance on shared
virtual memory. In Proceedings of the 23rd International Symposium on Computer
Architecture (ISCA), May 1996.

T. T. Inc. Wherever you want to run java, kaffe is there.

D. Jiang, B. Cokelley, X. Yu, A. Bilas, and J. P. Singh. Applicaiton scaling under
shared virtual memory on a cluster of smps. In The 13th ACM International
Conference on Supercomputing (ICS’99), June 1999.

D. Jiang, H. Shan, and J. P. Singh. Application restructuring and performance
portability across shared virtual memory and hardware-coherent multiprocessors.
In Proceedings of the 6th ACM Symposium on Principles and Practice of Parallel
Programming, June 1997.

P. Keleher, A. Cox, S. Dwarkadas, and W. Zwaenepoel. Treadmarks: Distributed
shared memory on standard workstations and operating systems. In Proceedings
of the Winter USENIX Conference, pages 115-132, Jan. 1994.

H. Lu, Y. C. Hu, and W. Zwaenepoel. Openmp on networks of workstations. In
Proceedings Supercomputing, 1998.

F. Mueller. A library implementation of posix threads under unix. In Proceedings
of the USENIX Conference, pages 29-41, Jan. 1993.

F. Mueller. Distributed shared-memory threads: Dsm threads. Workshop on Run-
Time systems for Parallel Programming, pages 31-40, April 1997.

J. P. Singh and J. L. Hennessy. Finding and exploiting parallelism in an ocean
simulation program: Experiences, results, implications. Journal of Parallel and
Distributed Computing, 15(1):27-48, May 1992.

R. Stets, S. Dwarkadas, N. Hardavellas, G. Hunt, L.Kontothanassis,
S. Parthasarathy, and M. Scott. = Cashmere-2L: Software Coherent Shared
Memory on a Clustered Remote-Write Network. In Proc. of the 16th ACM Symp.
on Operating Systems Principles (SOSP-16), Oct. 1997.

S. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta. Methodological consid-
erations and characterization of the SPLASH-2 parallel application suite. In Pro-
ceedings of the 28rd International Symposium on Computer Architecture (ISCA),
May 1995.

S. C. Woo, J. P. Singh, and J. L. Hennessy. The performance advantages of in-
tegrating message-passing in cache-coherent multiprocessors. In Proceedings of
Architectural Support For Programming Languages and Operating Systems, 1994.

Y. Zhou, L. Iftode, and K. Li. Performance evaluation of two home-based lazy
release consistency protocols for shared virtual memory systems. In Proceedings of
the Operating Systems Design and Implementation Symposium, Oct. 1996.

	Introduction and Background
	Modern Clusters and System Area Networks
	System Design
	Thread Management
	Synchronization Support
	Memory Subsystem
	Summary

	Results
	Legacy {em pthreads}{} Programs
	SPLASH-2 Applications

	Related Work
	Conclusion

