
A Design Exploration of Scalable Mesh-based Fully
Pipelined Accelerators

Westerley Carvalho1, Michael Canesche1, Lucas Reis1, Frank Torres2, Lucas Silva1, Peter Jamieson3,
José Nacif1, Ricardo Ferreira1

1: Computer Science Department, Universidade Federal de Vicosa, Brazil, email: ricardo@ufv.br
2: German Aerospace Center (DLR) , German, email:Frank.SillTorres@dlr.de

3: Dept. of Electrical and Computer Engineering, Miami University, Oxford, OH, USA, email: jamiespa@miamioh.edu

Abstract—A dataflow graph is a computation abstraction with
explicit dependencies that can be automatically parallelized. This
work focuses on mapping dataflow graphs onto reconfigurable
architectures and exploring them when fully pipelined. To embed
these graphs onto mesh-based architectures, we propose a flexible
mapping approach based on simulated annealing. We also imple-
ment a GPU parallel mapping to mitigate the mapping time. The
trade-offs of target architectures areas are evaluated by exploring
different interconnection topologies and local delay FIFOs on
FPGAs and ASICs. To quickly evaluate different architectures,
we developed a parameterized hardware generator that outputs
costs in terms of wire length and buffer costs. We also propose
a novel interconnection topology, called Chess. In comparison to
other state-of-the-art mapping tools, including CGRA-ME, SAT
solvers and VPR, our main contributions are: (a) finding optimal
or near-optimal fully pipelined mappings; (b) scaling the dataflow
graph size up to 70 operators without FIFOs; (c) proposing a
framework to perform a design exploration of mesh architectures
and more complex interconnection topologies.

Index Terms—stream dataflow, placement, routing, reconfig-
urable, CGRA, fully pipelined architectures

I. INTRODUCTION

Domain-specific hardware is a promising architecture choice
to achieve power-efficient and high-performance computation.
This work focuses on CGRAs as a one part of the hetero-
geneous computing landscape. In particular, recent work [1]
present CGRAs processing spatial dataflows as an approach to
exploit parallelism. In this work, we focus on improving the
mapping algorithms and performing architecture exploration
of the connecting topologies for mesh-based CGRAs.

The contribution of this work is twofold. First, we propose
and evaluate a novel Simulated Annealing (SA) mapping
algorithm for mesh-based CGRAs, including a new topology
called Chess. We propose to search for a large SA solu-
tion space to find the best possible solution in reasonable
amount of time. To explore and exploit CGRA architectures,
we have created an experimental framework that takes in a
parameterized configuration file and virtually creates, maps a
dataflow to, and evaluates a CGRA architecture. We measure
the quality of our results based on wire length and required
FIFO stages to map a fully-pipelined design correctly. Our
second significant contribution is to push the state-of-the-art
for CGRAs, which can, currently, find optimal solutions for
dataflow graphs up to 20 nodes, to up to 70 nodes. We compare

our approach to three others: CGRA-ME [2], SAT solvers [3],
and VPR [4]. We can also map graphs with up to 200 nodes by
exploring interconnection architectures that provide flexibility
to the mapping algorithm.

The remainder of this paper is structured as follows: Sec-
tion II provides details on the CGRAs implementation and
the respective algorithms that map designs to them. Section
III describes the architecture topologies that we explore for
CGRAs, and section IV describes our automated tool for
creating an architecture and evaluating those architectures.
Section V describes our mapping algorithm. Section VI shows
results for this case study. Finally, section VII concludes the
paper.

II. BACKGROUND

A. Mesh, Wire Length, and Delay Mismatch

A mesh is a well-known low-cost and scalable intercon-
nection network for CGRAs, where each cell has 4 adjacent
local connections (except on the corners and borders). To
calculate a cost to map a dataflow to a mesh, assume that
local connections have wire cost=0, Figure 1(a-c) shows a
dataflow design in (a) and various mapping instances in (b),
(c), (d), noting that non-local routing wires are colored gray
and local wires are bolded. In the (b) instance the longest
wire (lw) has cost = 1, and total wire (tw) cost = 2. The
tw includes both the mapped edges a → c and c → d (both
having cost = 1). Figure 1(c) depicts an optimal mapping
where tw = 0 since the mapping only uses local connections
to neighbors. Figure 1(d) shows another example where the
longest local wire lw = 2 and total wire tw = 2.

Fig. 1. (a) Dataflow; (b) lw=1,tw=2; (c) lw=tw=0; (d) lw=2,tw=2.

Most dataflow implementations take advantage of pipeline
techniques to improve the maximum clock frequency for an
architecture, and in a fully-pipelined dataflow mapping, there
can be a delay mismatch between two or more paths if the

signals have different arrival times. Figures 1(b) and 1(d) show
two examples of a delay mismatch.

B. Delay FIFO

To matchup pipeline paths, we use delay FIFOs, as de-
scribed in [5], which solves the delay mismatch. A delay FIFO
with length L implements a variable size FIFO, where L is
the maximum length. We fix the FIFO size at mapping time
and implement the delay FIFO at the PE operation inputs.
Figure 2(a) shows how to solve the mismatch with a FIFO
L = 2 at node d for the example from Figure 1(d). It is
possible to reduce the FIFO length to 1 by splitting the FIFO
across the path a→ b→ d, as shown in Figure 2(b).

a

Fig. 2. (a) FIFO L = 2; (b) FIFO L = 1; (c) Stream xi and xi+1;
(d) Dataflow pattern without optimal mapping in Mesh; (e) Minimal Mesh
Mapping with FIFO; (f) Simplified mapped dataflow.

There are graph patterns for mesh-based architectures,
where there is no optimal solution, i.e., without FIFOs to
perform delay matching. Suppose we compute the convolution
stream c = 2∗x[i+1]+6∗x[i], where the dataflow is shown in
Figure 2(c-d). For this example, the minimal mapping requires
at least a FIFO size 1, as shown in Figure 2(e). Finally,
Figure 2(f) shows a simplified view of the dataflow. We add
the label 1 to the long wire connection (edge b→ c) and use
a block to represent a delay FIFO (edge a→ c).

C. Mapping, Routing, Timing, and Metrics

In a stream-based system, the compiler performs Mapping,
Routing, and Timing (MRT [5]). The mapping or placement
phase (M) consists of assigning physical cells to the dataflow
PE nodes. The routing phase (R) generates wiring paths to map
the dataflow edges. Finally, the timing phase (T) guarantees
that there are no delay mismatches. It is possible to perform
these three phases separately or simultaneously. Nowatzki et
al. [5] provides an analysis of these trade-offs for very limited
graph sizes (≤ 20 nodes). In this work we evaluate dataflows
ranging from 20 to 200 nodes, and show that even in the
separation of phases approach, we can find optimal and near-
optimal solutions with fast execution times in comparison to
the results shown in [2], [3], [5].

For ASICs and FPGAs, a typical cost function metric is
the total wire length as this impacts routing resource costs
and hence the area of these chips. For CGRAs, the FIFO
size is a more appropriate metric that measures the quality of
mappings for a fully pipelined architecture [5]. The reasons
for this are: first, the wire resources are predefined once an
architecture is chosen, the routing capacity does not change,
being set to bytes or larger (typically 16, 32, or 64-bit transfers
of data). Regardless of the routing resources that are used in

the CGRA, the final throughput will always be optimal for
a valid solution, i.e., generating one result per clock cycle
in a fully pipelined architecture. Second, adding FIFOs does
not increase the latency because shorter paths are delayed to
balance the longest path’s overall delay. A routing solution
that requires a few long wires will result in a timing solution
that requires small FIFOs or none.

III. CGRA INTERCONNECTION TOPOLOGIES

As already mentioned, there are simple dataflow graphs for
which there is no possible mapping without FIFOs in a mesh
topology. This section presents the one-hop, which is a well-
know CGRA topology, and a novel topology named Chess.
Previous work on CGRA design exploration [6] shows that
one-hop mesh has enough flexibility to map dataflows onto
CGRAs efficiently. In a one-hop mesh, each cell has 8 adjacent
nodes.

Fig. 3. All distance from the top-left corner: (a) Mesh; (b) One-hop; (c)
Chess; (d) Hexagonal.

One-hop mesh reduces the distances by a factor of 2 in
comparison with mesh. Figures 3(a) and 3(b) show all wire
distances (lw) from the top-left corner for mesh and one-
hop, respectively. However, one-hop has double the number
of local interconnections requiring significant hardware re-
sources. Additionally, if we target optimal mapping without
FIFOs, the advantage of one-hop is the increased number
of adjacent nodes in comparison to mesh. One also might
suggest using diagonal connections such as north-east or north-
west. However, previous work has already shown that one-hop
topologies produce the best results [6].

Our work proposes a novel hybrid topology named Chess
(mesh/one-hop). Similar to a chessboard where there are
black and white alternating cells, our Chess interconnection
pattern has black cells with mesh connections, and white cells
with one-hop connections. Although the chess pattern has, on
average, 6 local connections per cell, the distance measure is
quite similar to one-hop, as shown in Figure 3(c). Additionally
we show a hexagonal or honeycomb pattern (see Figure 3(d)),
which also has 6 adjacent cells. Moreover, the chess pattern
reduces distance. For instance, the distance from the left top
corner to the bottom right corner is 5 and 7 for the Chess
and hexagonal, respectively (see Figure 3(c-d)). Furthermore,
Chess performance is close to one-hop (8 connections) with
the cost of a hexagonal (6 connections), as shown in our
experiments.

IV. CODE GENERATION FOR FPGA AND ASICS

We also propose a tool to automatically generate the
CGRAs, targeting the evaluation of area and power trade-

offs against the two technologies - FPGAs and ASICs. Our
tool is a parameterized hardware generator that evaluates the
quality/cost of a dataflow mapping as a function of mesh
size, interconnection topology, internal PE functionality, delay
FIFO size, and the implementation cost of all of these on the
target technology. Moreover, our CGRA design includes the
configuration memories, and the resulting design is partially
reconfigurable at run-time.

Each CGRA consists of a heterogeneous set of PEs and
an interconnection network that defines which PEs connect
to it. Each PE has a functional unit (FU) and a wrapper
interconnection interface. For each PE, the configuration file
specifies: 1) word size; 2) delay FIFO length, 3) functional
unit operation and opcodes; 4) neighborhood interconnection
with other PEs.

We evaluate the topologies and delay FIFO impact on FPGA
and ASICs to implement different CGRAs. Figure 4 shows the
area for CGRAs with different configurations implemented as
an overlay in FPGA technology. We use Intel’s Quartus for
the synthesis and target an ARIA10 FPGA.

The area results are then normalized to a baseline as follows.
For each grid size, our baseline is the mesh topology without
any FIFOs and bypassing routing resources. We considered
grid sizes ranging from 81 up to 1,296 PEs.

The Chess and one-hop wires and muxes add an overhead
of 1.2 to 1.3× and 1.4 to 1.5×, respectively. Therefore, these
topologies that potentially do not need FIFOs can improve
the area overhead. Finally, the clock frequency for all designs
ranges from 250 MHz to 450 Mhz. All of these designs have a
16-bit word size. Furthermore, we design a 4-bit CGRA with a
heterogeneous set of PEs to use all the FPGA DSP units. Half
of the PEs have 8 operations that include multipliers, and the
other half have no multipliers. The 46×64 CGRA use 40% of
the FPGA ALMs with a total of 3,036 PEs, and this CGRA
achieves a peak performance of 1.2 Tera 4-bits ops.

Fig. 4. Normalized area in number of ALMs for FPGA Overlay design.

We synthesize a set of CGRA designs by using the ASIC
flow FreePDK45TM 45nm variant of the FreePDKTM process
design kit [7]. Figure 5 shows the total silicon area for the
architectures and the fraction of the area occupied by the
registers in black. First, we use the 18 × 18 design without
routing resources and delay FIFOs as a baseline. The 18× 18
is 3.8× bigger than the 9×9, which shows that the design
grows linearly from 81 to 324 PEs. The Chess and one-hop
wires and muxes add a small overhead of 1.05× and 1.08×,
respectively. Therefore, the topologies without FIFOs improve

the mapping without an area overhead. The clock frequency
is approximately 1 GHz for these architectures.

Fig. 5. Total area and register area for CGRA (ASIC Flow).

V. MAPPING DATAFLOWS WITH SIMULATED ANNEALING

Recent works [2], [5], [8] propose integer linear program-
ming (ILP), SAT solvers, and deep reinforcement learning
for CGRA mapping. However, even when using state-of-
the-art ILP and SAT solvers, the execution time is in the
order of minutes. We propose to use a simulated annealing
(SA) approach, which is a well-known approach for mapping
designs to CGRAs [9] and FPGAs [4]. Instead of performing
random swaps, we propose a heuristic to scan the grid and
perform the swaps sequentially.

Our approach performs only the SA mapping with local
routing. Next, we execute the detailed routing for the long
wires, and finally, we perform the timing step where we
consider the FIFO cost function. We also propose to explore
the solution space by performing multiple executions of the
full SA. Each instance starts from a random permutation of
an initial mapping, and the SA minimizes the wire length for
each instance. As mentioned in Section II-C, the wire length
is just a mapping guideline, and our goal is to minimize the
FIFO size. The mapping does not consider the delay matching
requirements, and therefore, the reduced complexity needs less
execution time. Furthermore, we implement a GPU version of
our SA, where we execute each SA in its thread, differently
from previous approaches that parallelize the internals of an
SA instance with multiple threads.

VI. EXPERIMENTAL RESULTS

We evaluated our mapping technique by using public do-
main benchmarks extracted from three related works: (a) the
CGRA-ME design exploration framework [2]; (b) a Medi-
abench set from the University of California, Santa Bar-
bara [10];(c) Stream-Join dataflow control model [11]. We
include the Stream-Join for irregular flows [11], which handles
sparse data with simple dataflow operators and fewer dataflow
edges and nodes. We evaluate four dataflow examples from
this set [11]. In total, we evaluate 37 benchmarks: 14 from
CGRA-ME [2], 8 stream-joint graphs [11], and 15 from
Mediabench [10]. In all the experiments we map to a square
array of PEs where an N×N array has an N =

⌈√
|Nodes|

⌉
.

First, we propose to compare our approach to the ILP-based
approach from [2] and the SAT-solver approach presented

0

2

4

6
8

10

VPR
GPU-SAOne-hopChessMesh

F
if

o
L

en
gh

t

15 19
14

11 12
11

Fig. 6. FIFO length for UCSB express suite dataflows [10] in three topologies for 1,000 Instances of VPR and our SA approach. Low is better.

in [3]. With a timeout of 10 minutes, the ILP approach [2]
maps only 22 of the 37 benchmarks with the maximum graph
size of 23 nodes, and the SAT approach [3] maps 25 with the
maximum graph size of 44. Our approach successfully maps
all 37 benchmarks with the maximum graph size of 196, and
the average mapping time is a few seconds.

CGRA-ME [12] is a framework created for design explo-
ration for CGRA architectures, similar to ours. Although their
mapping approaches are generic, the execution time for the
current mapping based on ILP and SA [2] are prohibitively
long (minutes or hours) for dataflows with more than 20 nodes.

As ILP/SAT solvers do not scale, we propose to compare
our SA approach to the VPR tool [4]. Like our approach, VPR
does not perform the timing step for fully pipelined CGRAs.
Therefore, we apply our routing and our timing approach to the
VPR placement. We execute 1,000 VPR instances with random
initial placements to perform a fair comparison. Finally, as the
two benchmark sets from [2], [11] are limited to 25 nodes,
we use the UCSB mediabench set [10], in addition to k-means
benchmarks to compare the SA approaches. This suite is a
representative graph selection from Mediabench, where the
graph size ranges from 10 to 300 nodes.

Figure 6 shows the best mapping in 1,000 instances for 15
dataflows in three topologies: mesh, the novel Chess, and one-
hop. Our mapping on one-hop reaches the optimal solution for
all graph sizes smaller than 66 nodes, while VPR [4] reaches
the optimal solution for graph sizes smaller than 32 nodes. The
average FIFO length for the proposed Chess topology is 2.2
compared to 1.7 obtained by the one-hop and 4.1 for the mesh.
Therefore, the Chess reduces the one-hop cost as shown in
Section IV, and reaches a closer performance to one-hop and
1.9x better than mesh. Between 72 and 102 nodes, there are 3
graphs where one-hop/Chess only require FIFO length of one.
For Mediabench [10], in comparison to VPR, our mapping
reduces the average FIFO length in 1.22x, 1.42x, and 1.58x
for mesh, Chess, and one-hop topologies, respectively.

VII. CONCLUSION AND FUTURE WORK

In this work, we performed a design exploration of CGRAs
using a SA algorithm and a novel Chess topology. Our results
show that our algorithm is flexible and efficient to explore
the solution design space for larger dataflows compared to
those previously studied. The fully pipelined mapping has

the challenge of the path delay mismatch. Therefore, even
for small graphs, the problem is hard to solve. We can map
dataflows with 20 to 70 nodes in larger CGRAs (≥ 16) without
delay FIFOs due of the extra connections in the Chess and
one-hop topologies. Previous works [5] argues that it is hard
to map graphs with FIFO of sizes 2, 3 or less and our results
show that our SA approach performs it successfully. Finally,
our mapping is straightforward to parallelize on a GPU , and
it requires a few seconds to perform mappings for 200 nodes.

ACKNOWLEDGMENT

This study was financed in part by the Coordenação
de Aperfeiçoamento de Pessoal de Nı́vel Superior–Brasil
(CAPES)– Finance Code 001, FAPEMIG, CNPq, and Intel.

REFERENCES

[1] M. Canesche, M. Menezes, W. Carvalho, F. Torres, P. Jamieson, J. A.
Nacif, and R. Ferreira, “Traversal: A fast and adaptive graph-based
placement and routing for cgras,” IEEE Transactions on CAD of
Integrated Circuits and Systems, 2020.

[2] M. J. Walker and J. H. Anderson, “Generic connectivity-based cgra
mapping via integer linear programming,” in Symposium on Field-
Programmable Custom Computing Machines (FCCM), 2019.

[3] C. Donovick, M. Mann, C. Barrett, and P. Hanrahan, “Agile smt-based
mapping for cgras with restricted routing networks,” in Int. Conf. on
ReConFigurable Computing and FPGAs (ReConFig). IEEE, 2019.

[4] J. Luu, I. Kuon, P. Jamieson, T. Campbell, A. Ye, W. M. Fang, K. Kent,
and J. Rose, “Vpr 5.0: Fpga cad and architecture exploration tools with
single-driver routing, heterogeneity and process scaling,” ACM TRETS,
vol. 4, no. 4, p. 32, 2011.

[5] T. Nowatzki, N. Ardalani, K. Sankaralingam, and J. Weng, “Hybrid op-
timization/heuristic instruction scheduling for programmable accelerator
codesign,” in ACM PACT, 2018.

[6] N. Bansal, S. Gupta, N. Dutt, A. Nicolau, and R. Gupta, “Network
topology exploration of mesh-based coarse-grain reconfigurable archi-
tectures,” in DATE, vol. 1. IEEE, 2004.

[7] FreePDK45, “Freepdk45tm 45nm process design kit,”
https://www.eda.ncsu.edu/wiki/FreePDK45:Contents, 2019.

[8] D. Liu, S. Yin, G. Luo, J. Shang, L. Liu, S. Wei, Y. Feng, and
S. Zhou, “Data-flow graph mapping optimization for cgra with deep
reinforcement learning,” IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, 2019.

[9] B. Mei, S. Vernalde, D. Verkest, H. De Man, and R. Lauwereins,
“Adres: An architecture with tightly coupled vliw processor and coarse-
grained reconfigurable matrix,” in International Conference on Field
Programmable Logic and Applications. Springer, 2003, pp. 61–70.

[10] S. B. University of California, “Express benchmarks,”
https://web.ece.ucsb.edu/EXPRESS/benchmark/, 2020.

[11] V. Dadu, J. Weng, S. Liu, and T. Nowatzki, “Towards general purpose
acceleration by exploiting common data-dependence forms,” in Interna-
tional Symposium on Microarchitecture, 2019.

[12] U. of Toronto, “Cgra - modelling and exploration,” http://cgra-
me.ece.utoronto.ca/, 2019.

